Electronic Modeling

Vol 38, No 5 (2016)

https://doi.org/10.15407/emodel.38.05

CONTENTS

Mathematical Modeling and Computation Methods

  PALAGIN A.V.
Ontology Conception of Transdisciplinary Scientific Research


3-10
  FEYZIYEV F.G., MEKHTIYEVA M.R., SAMEDOVA Z.A.
Modification of Peterson-Gorenstein-Zierler Method, Bringing the Matrix to Triangular Form (Binary Case)


11-22
  KIENLE A., PALIS S., MANGOLD M., DÜRR R.
Modeling and Simulation of Particulate Processes


23-34
  GLUKHOV A.D.
Quasi-Random Graphs and Structural Stability of Complex Discrete Systems

35-42

Informational Technologies

  PETRENKO A.A., PETRENKO A.I.
The Semantic Model-Driven Service Systems Architecture Modeling Based on Domain Ontologies

43-60

Computational Processes and Systems

  BELIK V.K.
The use of Nanoelectromechanical Systems to Create Some Information Models and Specialized Computing Devices

61-74

Application of Modeling Methods and Facilities

  SHVAYKA A.I.
Load Balancing in IoT Applications Using Consistent Hashing


75-84
  MAKSIMOV S.Yu., PRILIPKO E.O., RYBALKIN E.O.
Axisymmetric Integrated Distribution Model of the Sinusoidal Welding Current Arc Welding Gap in the Plate


85-100
  GULIYEV H.B., RAHMANOV N.R.
Probability Load Flow Modeling in the Power System with Distributed Generation and Renewable Energy Sources


101-112

Ontology Conception of Transdisciplinary Scientific Research

A.V. Palagin, Dr Sci. (Tech.)
V.M. Glushkov Institute of Cybernetics,
National Aacademy of Sciences of Ukraine
(This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2018, 38(5):03-10
https://doi.org/10.15407/emodel.38.05.003

ABSTRACT

One of the highest priority directions of modern community development is building a knowledge-oriented society (as a type of stage of information community development), in which most working people are in the line of work related to creation, saving, processing and implementation of information, especially its (information’s) highest form—knowledge. Among other important problems, which are resolved at the current point of societal development, the problem of providing scientifically grounded, effectively presented and complete informational resources is especially worth emphasizing.

KEYWORDS

knowledge, subject domain, ontological approach, transdisciplinary (TD) research, unified network of TD-knowledge.

REFERENCES

1. Palagin, A.V., Kriviy, S.L. and Petrenko, N.G. (2012), Ontologicheskie metody i sredstva obrabotki predmetnykh znaniy. Monografiya [Ontological methods and tools for field of subject knowledge processing. Monograph], The V. Dal Publishing House of the NEU, Lugansk, Ukraine.
2. Palagin, A.V. (2014), “Transdisciplinarity, computer science and the development of modern civilization”, Visnyk NAN Ukrainy, no. 7, pp. 25-33.
3. Palagin, A.V. (2013), “The problem of transdisciplinarity and the role of computer science”, Cybernetics and Systems Analysis, no. 5, pp. 3-13.
4. Kurgaev, O.P. and Palagin, A.V. (2015), “On the subject of information support for scientific research”, Visnyk NAN Ukrainy, no. 8, pp. 33-48.
5. Palagin, A.V. and Yakovlev, Y.S. (2005), Sistemnaya integratsiya sredstv obrabotki sistemnykh znaniy [System integration of means of computer technology], UN²VERSUM-Vinnitsa, Vinnitsa, Ukraine.

Full text: PDF (in Russian)

MODIFICATION OF PETERSON-GORENSTEIN-ZIERLER METHOD, BRINGING THE MATRIX TO TRIANGULAR FORM (BINARY CASE)

F.G. Feyziyev, M.R. Mekhtiyeva, Z.A. Samedova

Èlektron. model. 2018, 38(5):11-22
https://doi.org/10.15407/emodel.38.05.011

ABSTRACT

The theorem on the number of errors, which occurred in the received messages in the case of transmission of the binary Bose-Chaudhuri-Hocquenghem codes over communication channels, has been formulated. A modification of the Peterson-Gorenstein-Zierler method, based on the reduction of the matrix to triangular form, for detecting and correcting errors in the binary Bose-Chaudhuri-Hocquenghem codes has been proposed. The technique has been developed for accelerating calculation in accordance with this modification. A detailed description of the algorithm of decoding the received messages based on the above modifications and techniques is given.

KEYWORDS

Binary Bose-Chaudhuri-Hocquenghem code, Peterson-Gorenstein-Zierler method, matrix in triangular form, primitive element of finite field, error locator.

REFERENCES

1. Bleykhut, R. (1986), Teoriya i praktika kodov, kontroliruyushchikh oshibki [Theory and practice of error control codes], Translated by Grushina, I.I., and Blinov, B.M., Mir, Moscow, Russia.
2. Ivanov, M.A. (2001), Kriptograficheskiye metody zashchity informatsii v kompyuternykh sistemakh i setyakh [Cryptographic methods of information protection in computer systems and networks], Kudits-obraz, Moscow, Russia.
3. William, C.H., Vera, P. (2003), Fundamentals of error-correcting codes, Cambridge University Press, Cambridge, UK.
4. Birkgof, G. and Barti, T. (1976), Sovremennaya prikladnaya algebra [Modern applied algebra], Translated by Manina, Yu.I., Mir, Moscow, Russia.
5. Feyziyev, F.G. (2015), “On one modification of the Peterson-Gorenstein-Zierler algorithm and its effective realization”, Elektronnoe modelirovanie, Vol. 37, no. 3, pp. 3-16.
6. Feyziyev, F.G., and Babavand, A.M. (2012), “Description of decoding of cyclic codes in the class of sequential machines based on the Meggitt theorem”, Avtomatika i vychislitelnaya tekhika, no. 4, pp. 26-33.
https://doi.org/10.3103/S0146411612040037

Full text: PDF (in Russian)

Modeling and Simulation of Particulate Processes

A. Kienle 1,2, Prof. Dr.-Ing., S. Palis 2, Jun. Prof. Dr.-Ing.,
M. Mangold 1, Prof. Dr.-Ing., R. Dürr 2, Dipl.-Ing.
1 Max Planck Institute for Dynamics of Complex Technical Systems
(Sandtorstr. 1, 39106 Magdeburg, Germany),
2 Otto von Guericke Universtat
(Universitatsplatz 2, 39106 Magdeburg, Germany)
(Tel. +49 391 67 58523, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2018, 38(5):23-34
https://doi.org/10.15407/emodel.38.05.023

ABSTRACT

Particulate processes can be modeled by means of populations balances. This is an important class of nonlinear partial differential equations with many applications in chemical and biochemical engineering. Major challenges are multidimensional problems, coupling with nonideal flow fields and feedback control. Possible solution approaches to these problems are presented and illustrated with different types of process applications including fluidized bed spray granulation, crystallization and influenza vaccine production processes.

KEYWORDS

partial differential equations, population balances, control, model reduction, proper orthogonal decomposition, direct quadrature method of moments.

REFERENCES

1. Ramkrishna, D. (2000), Population balances: Theory and applications to particulate systems in engineering, Academic Press, New York, USA.
2. Deen, N.G., Van Sint Annaland, M., Van der Hoef, M.A. and Kuipers, J.A.M. (2007), Review of discrete particle modeling of fluidized beds, Chem. Engng. Sci., Vol. 62, pp. 28-44.
3. Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M. and L. Mrl, L. (2002), Analysis of start-up process in continuous fluidized bed spray granulation by population balance modeling, Chem. Engng. Sci., Vol. 57, pp. 4369-4390.
4. Radichkov, R., Müller, T., Kienle, A., Heinrich, S., Peglow, M. and Mrl, L. (2006), A numerical bifurcation analysis of fluidized bed spray granulation with external classification, Chem. Engng. Proc., Vol. 45, pp. 826-837.
5. Palis, S. and Kienle, A. (2014), Discrepancy based control of particulate processes, J. Proc. Contr., Vol. 24, pp. 33-46.
https://doi.org/10.1016/j.jprocont.2013.12.003
6. Palis, S. and Kienle, A. Discrepancy based control of continuous fluidized bed spray granulation with internal product classification, Proc. 8th IFAC International Symposium on Advanced Control of Chemical Processes, Singapore, July 10-13, 2012, pp. 756-761.
7. Palis, S., Bck, A. and Kienle, A. (2013), Discrepancy based control of systems of population balances, Proc. 1st IFAC Workshop on Control of Systems Modeled by Partial Differential Equations, Paris, September 25-27, 2013, pp. 172-176.
8. Palis, S. and Kienle, A. (2012), Diskrepanz basierte Regelung der kontinuierlichen Flssigkristallisation, AT-Automatisierungstechnik, Vol. 60, pp. 145-154.
9. Krasnyk, M., Mangold, M., Ganesan, S. and L. Tobiska, L. (2012), Numerical reduction of a crystallizer model with internal and external coordinates by proper orthogonal decomposition, Chem. Engng. Sci., Vol. 70, pp. 77-86.
10. Krasnyk, M., Mangold, M. and Kienle, M. (2010), Extensions of the POD model reduction to multi-parameter domains, Chem. Engng. Sci., Vol. 65, pp. 6238-6246.
11. Khlopov, D. and Mangold, M. (2015), Automatic model reduction of linear population balance models by proper orthogonal decomposition, Proc. Vienna Conference on Mathematical Modeling, Vienna, February 18-20, DOI 10.1016/j.ifacol.2015.05.019, 2015.
12. Mangold, M., Feng, L.H., Khlopov, D., Palis, S., Benner, P., Binev, D. and Seidel-Morgenstern, A. (2015), Nonlinear model reduction of a continuous fluidized bed crystallizer, J. Comp. Appl. Math., Vol. 89, pp. 253-266.
https://doi.org/10.1016/j.cam.2015.01.028
13. Mangold, M., Khlopov, D., Danker, G., Palis, S., Sviatnyi, V. and Kienle, A. (2014), Development and nonlinear analysis of dynamic plant models in ProMoT/DIANA, Chemie-Ing.-Techn., Vol. 86, pp. 1-12.
14. Genzel, Y. and Reichl, U. (2009), Continuous cell lines as a production system for influenza vaccines, Expert Rev. Vaccines, Vol. 8, pp. 1681-1692.
15. Müller, T., Dürr, R., Isken, B., Schulze-Horsel, J., Reichl, U. and Kienle, A. (2013), Distributed modeling of human influenza a virus-host cell interactions during vaccine production, Biotechnol. Bioengng., Vol. 110, pp. 2252-2266.
https://doi.org/10.1002/bit.24878
16. Dürr, R., Müller, T., Isken, B., Schulze-Horsel, J., Reichl, U. and Kienle, A. (2012), Distributed modeling and parameter estimation of influenza virus replication during vaccine production, Proc. Vienna Conference on Mathematical Modeling, Vienna, February 15-17, 2012.
17. Dürr, R. and Kienle, A. (2014), An efficient method for calculating the moments of multi- dimensional growth processes in population balance systems, Can. J. Chem. Eng., Vol. 92, pp. 2088-2097.
18. Dürr, R.,Müller, T. and Kienle, A. (2015), Efficient DQMOM for multivariate population balance equations and application to virus replication in cell cultures, Proc. Vienna Conference on Mathematical Modeling, Vienna, February 18-20, DOI 10.1016/j.ifacol.2015.05.045, 2015.
19. Haseltine, E.L., Yin, J. and Rawlings, J.B. (2005), Dynamics of viral infections: incorporating both the intracellular and extracellular levels, Comput. Chem. Engng., Vol. 29, pp. 675-686.
https://doi.org/10.1016/j.compchemeng.2004.08.022

Full text: PDF (in Russian)

QUASI-RANDOM GRAPHS AND STRUCTURAL STABILITY OF COMPLEX DISCRETE SYSTEMS

A.D. Glukhov

Èlektron. model. 2018, 38(5):35-42
https://doi.org/10.15407/emodel.38.05.035

ABSTRACT

Structural stability of complex discrete systems with random failures has been considered. Estimates of the connectivity system under the preset number of failures have been found with the help of quasi-random graphs. The evolution of connectivity of the systems based of expanders has been investigated.

KEYWORDS

complex discrete system, expander, quasi-random graph.

REFERENCES

1. Glukhov, O., Korostil, Ju. (2004), “Structural safety of complex discrete systems with random failures”, Modelyuvannya ta informatsiyni tekhnologii, Zbirnyk naukovykh prats IPME NAN Ukrainy, Vol. 27, pp. 91-95.
2. Raigorodsky, A. (2011), Modeli sluchaynyh grafov [Models of random graphs], MNTsMO, Moscow, Russia.
3. Erdos, P. and Renyi, A. (1960), On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci., Vol. 5, pp. 17-61.
4. Chung, F.R.K. and Garey, M.R. (1984), Diameter bounds for altered graphs, Journal of Graph Theory, Vol. 8, pp. 511-534.
5. Diestel, R. ( 2000) , Graph Theory, Springer-Verlag, NewYork, USA.
6. Glukhov, O.D. (2010), “On quasi random planar graphs of Poisson type”, Modelyuvannya ta informatziyni tekhnologii, Zbirnyk naukovykh prats IPME NAN Ukrainy, Vol. 57, pp. 10-12.
7. Hoory, S., Linial, N. and Wigderson, A. (2006), Expander graphs and their applications, Bulletin of the American Mathematical Society, Vol. 43, No. 4, pp. 439-561.
8. Cvetkovic, D.M., Doob, M. and Sachs, H. (1995), Spectra of Graphs, Johann Ambrosius Barth Verlag, Heidelberg/Leipzig, Germany.

Full text: PDF (in Russian)