Electronic Modeling

Vol 38, No 3 (2016)

https://doi.org/10.15407/emodel.38.03

CONTENTS

  The 75th Birthday of Viktor Fedorovich Yevdokimov

3-4

Mathematical Modeling and Computation Methods

  MELNYK I.V., LUNTOVSKIY A.O.
Investigation of Possibilities of Using Parallel Computing for Simulation of Technological Gas-Discharge Electron Sources


5-22
  KALINOVSKY Ya.A., BOYARINOVA Y.E., SINKOVA T.V., SUKALO A.S.
Mathematical Modeling of the Trigonometric Functions in a Numerical System of Generalized Quaternions


23-32
  DOLINENKO V.V., KOLYADA V.O., SHAPOVALOV E.V., SCUBA T.G.
Computer Modeling of Optimal Control of Weld Pool Position During Root Joints MIG/MAG Welding

33-46

Computational Processes and Systems

  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V., CHEREPANOVA M.R.
Modulo Codes with Summation in Concurrent Error Detection Systems. II. Decrease of Hardware Redundancy of Concurrent Error Detection Systems


47-62
  VALIALKIN A.V., KONASHEVYCH O.I.
Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions and Distinct Time Frames for Big Data Systems

63-74

Application of Modeling Methods and Facilities

  FARHADZADEH E.M., MURADALIYEV A.Z., FARZALIYEV Y.Z., ABDULLAYEVA S.A.
Increase of Accuracy of the Quantitative Estimation of Relative Duration of Conditions of EPS Objects


75-86
  BEREGUN V.S.
Research of Approximation Accuracy of Symmetrical Probability Density Function by Orthogonal Representations Using Hermite Polynomials


87-98
  KOTSIUBA I.V.
Human-insider Threat Analysis for the Purpose of Modeling


99-108
  VOLOSHYN D.V.
Modelling of Autonomous Navigation for an Unmanned Aerial Vehicle Based on Video Stream

109-118

Chronicle and Information

  KUTSAN Yu.G.
Expert Conclusion Concerning the Draft Law of Ukraine On Electric Energy Market of Ukraine


119-122

Color figures to the articles are in the insets

INVESTIGATION OF POSSIBILITIES OF USING PARALLEL COMPUTING FOR SIMULATION OF TECHNOLOGICAL GAS-DISCHARGE ELECTRON SOURCES

I.V. Melnyk, A.O. Luntovskiy

Èlektron. model. 2018, 38(3):05-22
https://doi.org/10.15407/emodel.38.03.005

ABSTRACT

The methods of estimation of the efficiency of parallelization for computational algorithms for the problems of different level of complicity have been considered in the article. The problems of different level of complicity, which are connected with simulation of technological high-voltage glow discharge electron sources, are considered as the testing examples. Examples of parallelization of the problems of calculation of magnetic field of symmetric lens, analysis of temperature and mobility of ions in anode plasma, calculation of losses of electron beam current during its transporting, as well as simulation of self-consistent electron-ion optic of high voltage glow discharge,
are described.

KEYWORDS

parallel computing, clusters, arithmetic-logic function, recurrent matrix, electron beam, electron-beam technologies, electron sources, anode plasma.

REFERENCES

1. Schill, A. and Springer, T. (2012), Verteilte Systeme—Grundlagen und Basistechnologien, 2, Auflage, Springer-Verlag, Germany.
2. Tanenbaum, A.S. and Wetherall, D.J. (2012), Computernetzwerke, 5., aktualisierte Auflage, Pearson Studium, Germany.
3. Hokni, R. and Istvud, Dzh. (1987), Computer simulation using particles, Mir, Moscow, Russia.
4. Molokovskiy, S.I. and Sushkov, D.I. (1991), Intensivnye elektronnye i ionnye puchki [Intensive electron guns and electron beams], Energoatomizdat, Moscow, Russia.
5. Denbnovetskiy, S.V., Melnyk, V.G., Melnyk, I.V. and Felba, J. (1997), “Model of beam formation in a glow discharge electron gun with a cold cathode”, Applied Surface Science, no. 111, pp. 288-294.
https://doi.org/10.1016/S0169-4332(96)00761-1
6. Melnik, I.V. and Tugai, S.B. (2010), “Methods of simulation of technological high voltage glow discharge electron sources”, Elektronnoe modelirovanie, Vol. 32, no. 6, pp. 31-43.
7. Sveshnikov, V.M. and Rybdylov, B.D. (2013), “About parallelization of solving of boundary value problems on quasi-structured grids”, Vestnik Uralskogo gosudarstvennogo universiteta, Vol. 2, 3, pp. 63-72.
8. Medvedev, A.V., Sveshnikov, V.M. and Turchanovskiy, I.Yu. (2014), “Parallelization of solving boundary tasks on quasi-structured grids with using hybrid calculations CPU+GPU”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Informatsionnye tehnologii, Vol. 12, no. 1, pp. 50-54.
9. Sveshnikov, V.M. (2009), “Building of direct and iteration methods of decomposition”, Sibirskiy zhurnal promyshlennoy matematiki, Vol. 12, no. 3(39), pp. 99-109.
10. Melnyk, I.V. (2009), “Analysis of possibilities of using matrix macrooperations of system Matlab for solving the applied tasks”, Elektronnoe modelirovanie, Vol. 31, no. 3, pp. 37-51.
11. Melnyk, I.V. and Shinkarenko, N.V. (2011), “Analysis of algorithm particularities of calculated matrix for solving the programming tasks with using matrix macrooperations”, Elektronnoe modelirovanie, Vol. 33, no. 2, pp. 81-92.
12. Norenkov, I.P. and Manichev, V.B. (1990), Osnovy teorii i proektirovaniya SAPR [Bases of the theory and design of CAD-systems], Vysshaya shkola, Moscow, Russia.
13. Melnyk, I.V. (2007), “Classification of models of electron-optical systems in the point of view of CAD-systems methodology”, Elektronika i svyaz, Vol. 12, no. 2 (37), pp. 20-31.
14. Melnyk, I.V. (2013), “Generalized methods of simulation of high-voltage glow dicharge triode electron sources”, Elektronnoe modelirovanie, Vol. 35, no. 4, pp. 93-107.
15. Velihov, E.P., Kovalyov, V.S. and Rahimov, A.T. (1987), Fizicheskie yavleniya v gazorazryadnoy plasme [Physical phenomena in the gas-discharge plasma], Nauka, Moscow, Russia.
16. Denbnovetskiy, S.V., Melnyk, V.G., Melnyk, I.V. and Tugai, B.A. (2010), “Simulation of guiding of short-focus electron beams from soft to high vacuum with taking into account the dessipation of thermal velocity of electrons”, Prikladnaya fizika, no. 3, pp. 84-90.

Full text: PDF (in Russian)

MATHEMATICAL MODELING OF THE TRIGONOMETRIC FUNCTIONS IN A NUMERICAL SYSTEM OF GENERALIZED QUATERNIONS

Ya.A. Kalinovsky, Y.E. Boyarinova, T.V. Sinkova, A.S. Sukalo

Èlektron. model. 2018, 38(3):23-32
https://doi.org/10.15407/emodel.38.03.023

ABSTRACT

Representations of the trigonometric functions of the generalized quaternion based on the method of associated system of differential equations have been constructed

KEYWORDS

hypercomplex number system, exponential function, trigonometric function, sinus, cosinus, generalized quaternion, basis, Cayley’s table.

REFERENCES

1. Godel, C. (1949), An Example of a New Type of Cosmological Solutions of Einstein's Field Equations of Gravitation, Rev. Mod. Phys., Vol. 21, no. 3, pp. 447-450.
2. Klipkov, S.I. (2014), “Generalized analysis of matrix representations of associative hypercomplex number systems used in the energy problems”, Reyestratsiya, zberigannya i obrobka danykh, Vol. 16, no. 2, pp. 28-41.
3. Alagos, Ya., Oral, K. At H. and Yuce, S. (2012), Split Quaternion Matrices, Miscolc Mathematical Notes, Vol. 13, no. 2, pp. 223-232.
4. Janovska, D. and Opfer, G. (2013), “Linear equations and the Kronecker product in coquaternions”, Mitt. Math. Ges Hamburg, Vol. 33, pp. 181-196.
5. Kalinovsky, Ya.A., Boyarinova, Yu.E. and Turenko, A.S. (2015), “Research relations between generalized quaternion and Grassmann-Clifford doubling procedures”, Reyestratsia, zberigannya i obrobka danykh, Vol. 17, no. 1, pp. 36-45.
6. Mamagami, A.B. and Jafari, M. (2013), “Some Notes on Matrix of Generalized Quaternion”, International Research Journal of Applied and Basic Sciences, Vol. 7, no. 14, pp. 1164-1171.
7. Kalinovsky, Ya.A., Turenko, A.S., Boyarinova, Yu.E. and Khitsko, Ya.V. (2015), “Properties of generalized quaternions and their relation with the Grassmann-Clifford doubling procedure”, Elektronnoe modelirovanie, Vol. 37, no. 2, pp. 17-26.
8. Boyarinova, Yu.E., Kalinovsky, Ya.A. and Sukalo, A.S. (2015), “Construction of digital signature algorithm using functions of generalized quaternions”, Reyestratsia, zberigannya i obrobka danykh, Vol. 17, no. 3, pp. 48-55.
9. Kalinovsky, Ya.A., Boyarinova, Yu.E. and Sukalo, A.S. (2015), “Mathematical modeling of representations of exponential and logarithmic functions in hypercomplex numerical system of generalized quaternions”, Reyestratsia, zberigannya i obrobka danykh, Vol. 17, no. 4, pp. 11-20.
10. Sinkov, M.V., Kalinovsky, Ya.O. and Boyarinova, Yu.E. (2010), Konechnomernye giperkompleksnye chislovye sistemy. Osnovy teorii. Primeneniya [Finite-dimensional hypercomplex number systems. Fundamentals of the theory. Applications], Institut problem registratsii informatsii NAN Ukrainy, Kyiv, Ukraine.
11. Kalinovsky, Ya.O. (2007), “Methods of computer modeling and calculations using hypercomplex number systems”, Thesis for Dr. Sci. (Tech.) degree, Institute for Problems of Information Recording of NAS of Ukraine, Kyiv, Ukraine.
12. Kalinovsky, Ya.A. (2003), “Study of isomorphism properties of quadriplex and bicomplec numerical systems”, Reyestratsia, zberigannya i obrobka danykh, Vol. 5, no. 1, pp. 69-73.
13. Kalinovsky, Ya.A., Roenko, N.V. and Sinkov, M.V. (1996), “Methods for constructing nonlinear functions in extensions of complex numbers”, Kibernetika i sistemnyi analiz, no. 4, pp. 178-181.
14. Hamilton, W.R. (1848), “Researches respecting quaternions: First series”, Transactions of the Royal Irish Academy, Vol. 21, Part 1, pp. 199-296.
15. Kàhler, U. (1998), “Die Anwendung der hyperkomplexen Funktionentheorie auf die Losung partieller Differentialgleichungen”, available at: www.tu-chemnitz.demathematik/ prom_habil/promint.pdf (1998).
16. Brackx, F. (1979), “The Exponential Function of a Quaternion Variable”, Applicable Analysis, Vol. 8, pp. 265-276.
https://doi.org/10.1080/00036817908839234
17. Scheicher, K., Tichy, R.F. and Tomantschger, K.W. (1997), “Elementary Inequalities in Hypercomplex Numbers”, Anzeiger, Vol. II, no. 134, pp. 3-10.
18. Holin, H. “The quaternionic exponential and beyond”, available at: http://www.bigfoot.com/~Hubert.Holin.
19. Sinkov, M.V., Kalinovsky, Ya.A. and Sinkova, T.V. (2002), “Some linear and non-linear operation of generalized complex numbers”, Reyestratsia, zberigannya i obrobka danykh, Vol. 4, no. 3, pp. 55-61.

Full text: PDF (in Russian)

COMPUTER MODELING OF OPTIMAL CONTROL OF WELD POOL POSITION DURING ROOT JOINTS MIG/MAG WELDING

V.V. Dolinenko, V.O. Kolyada, E.V. Shapovalov, T.G. Scuba

Èlektron. model. 2018, 38(3):33-46
https://doi.org/10.15407/emodel.38.03.033

ABSTRACT

The paper proposes a method of synthesis and computer modeling of the optimal state controller for automatic control system of MIG/MAG (arc welding in shielding gases) orbital welding root passes. We consider the problem of optimal control of root pass formation with feedback from video-pyrometric sensor, which uses a video of the weld pool in its infrared radiation. Modeling of the system of the weld pool optimal position control at welding with torch transverse oscillations of 1 Hz and 3 Hz has been made.

KEYWORDS

MIG/MAG welding with transverse electrode oscillations, the root seam, weld pool, the optimal state feedback control.

REFERENCES

1. Belfor, M.G. and Paton, B.E. (1974), Oborudovanie dlya dugovoi svarki i shlakovoy svarki i naplavki [Equipment for arc and slag welding and surfacing], Vysshaya shkola, Moscow, Russia.
2. Vornovitsky, I.N., Kucherova, M.I., Rantsev, A.A. and Chislov, S.A. (1999), “Welding of root weld joints of pipes without backing rings”, Svarochnoe proizvodstvo, no. 12, pp. 30-32.
3. Poloskov, S.I., Bukarov, V.A. and Ischenko, Y.S. (2003), “Features management of root formation during orbital welding of pipes”, Svarochnoe proizvodstvo, no. 4, pp. 3-10.
4. Erokhin, A.A. and Ischenko, Y.S. (1967), “Some regularities of formation when melted the orbital welding of pipes”, Svarochnoe proizvodstvo, no. 4, pp. 16-18.
5. GOST 16037-80 (1980), Soyedineniya svarnye stalnykh truboprovodov. Osnovnye tipy, strukturnye elementy i razmery [Welded joints of steel pipelines. Basic types and sizes of structural elements], Izd-vo standartov, Moscow, Russia.
6. Poloskov, S.I., Ischenko, Y.S. and Bukarov, V.A. (2003), “Analysis of the factors determining the formation of the weld pool in orbital welding of pipes (review)”, Svarochnoe proizvodstvo, no. 2, pp. 11-19.
7. Davydov, V.A., Kolupaev, Y.F. and Sidorov, A.V. (1988), “Control forms the back of the root pass welding joints with groove”, Svarochnoe proizvodstvo, no. 11, pp. 9-11. 
8. Chernyshev, G.G. and Akulov, A.I. (1965), “Considerations for selection of welding in CO2 root weld pipe joints turning”, Avtomaticheskaya svarka, no. 12, pp. 73.
9. Timchenko, V.A., Dubovetsky, S.V., Gursky, K.P., Fedotov, P.F. and Pavlyuk, Y.V. (1989), “Influence of oscillations trajectory of the electrode to form a seam at robotic arc welding in carbon dioxide”, Avtomaticheskaya svarka, no. 2, pp. 73.
10. Doumanidis, C.C. and Hardt, D.E. (1990), “Simultaneous in-process control of heat-affected zone and cooling rate during arc welding”, Welding Journal, Vol. 69, May 1990, pp. 186s-196s.
11. Shan-Ben Chen and Jing Wu (2008), “Intelligentized methodology for arc welding dynamical processes: visual information acquiring, knowledge modeling and intelligent control”, Springer Publishing Company, Incorporated, Germany, USA.
12. Bae, K.Y., Lee, T.H. and Ahn, K.C. (2002), “An optical sensing system for seam tracking and weld pool control in gas metal arc welding of steel pipe”, Journal of Materials Processing Technology, Vol. 120, pp. 458-465.
https://doi.org/10.1016/S0924-0136(01)01216-X
13. Huang, J., Huang, J., Zou, Y., Jiang, L., Xue, L. and Huang, M. (2008), “Study on a pipe welding robot based on laser vision sensing”, Proceedings of IEEE Conference on Robotics, Automation and Mechatronics”, Chengdu, September 21-24, 2008, pp. 720-723.
https://doi.org/10.1109/RAMECH.2008.4681506
14. Lobanov, L.M., Shapovalov, E.V. and Kolyada, V.A. (2014), “Use of modern information technology to meet the challenges of automation of technological processes”, Tekhnicheskaya diagnostika i nerazrushayuschiy control, no. 4. pp. 52-56.
15. Dolinenko, V.V., Kolyada, V.A., Scuba, T.G. and Shapovalov, E.V. (2010), “Optimum control of weld bead formation”, Avtomaticheskaya svarka, no. 2, pp. 23-29. 
16. Kim, D.P. (2004), Teoriya avtomaticheskogo upravleniya. Vol. 2. Mnogomernye, nelineinye, optimalnye i adaptivnye sistemy: Uchebnoye posobiye [Automatic control Theory. Vol. 2. Multidimensional, nonlinear, optimal and adaptive systems: Manual], Fizmatlit, Moscow, Russia.
17. Beiker, Dzh. and Greivs-Morris, P. (1986), Approksimatsii Pade [Pade approximations], Mir, Moscow, Russia.
18. Perelmuter, V.M. (2008), Pakety rasshireniya MATLAB – Control System Toolbox and Robust Control Toolbox [Extension packages MATLAB: Control System Toolbox and Robust Control Toolbox], Solomon Press, Moscow, Russia.
19. Kvakernak, H. and Sivan, R. (1977), Lineynye optimalnye sistemy kontrolya [Linear optimal control systems], Translated from English, Mir, Moscow. Russia.
20. Braison, A. and Yu-Shi, Ho (1972), Prikladnaya teoriya optimalnogo upravleniya [Applied theory of optimal control],Translated from English, Mir, Moscow, Russia.

Full text: PDF (in Russian)

MODULO CODES WITH SUMMATION IN CONCURRENT ERROR DETECTION SYSTEMS. II. DECREASE OF HARDWARE REDUNDANCY OF CONCURRENT ERROR DETECTION SYSTEMS

V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov, M.R. Cherepanova

Èlektron. model. 2018, 38(3):47-62
https://doi.org/10.15407/emodel.38.03.047

ABSTRACT

Ways of concurrent error detection systems organization are described. Influence of code with summation modulo value on the concurrent error detection system hardware redundancy is studied. Classification of modulo codes with summation is offered.

KEYWORDS

concurrent error detection system, hardware redundancy, code with summation, Berger code, parity code, modulo codes with summation, detection of error in combinational circuits.

REFERENCES

1. Sapozhnikov, V.V., Sapozhnikov, Vl.V., Efanov, D.V. and Cherepanova, M.R. (2016), “Modulo codes with summation in concurrent error detection systems. I. Ability to detect errors by modulo codes in data vectors”, Elektronnoe modelirovanie, Vol. 38, no. 2, pp. 27-48.
2. Kavousianos, X. and Nikolos, D. (1998), “Novel TSC Checkers for Bose-Lin and Bose Codes”, Proceedings of the 3ed IEEE Intern. On-Line Testing Workshop, July 6-8, 1998, Capry, Italy, pp. 172-176.
3. Nikolos, D. and Kavousianos, X. (1999), “Modular TSC checkers for Bose-Lin and Bose codes”, Proceedings of the IEEE VLSI Test Symposium, April 25-29, 1999, Dana Point, USA, pp. 354-360.
4. Goessel, M. and Graf, S. (1994), Error detection circuits, McGraw-Hill, London, UK.
5. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2014), “On codes with summation of data bits in concurrent error detection systems”, Avtomatika i telemekhanika, no. 8, pp. 131-145.
https://doi.org/10.1134/S0005117914080098
6. Goessel, M. and Sogomonyan, E.S. (1996), “Construction of code-separating and self-parity combination circuits for self-testing and functional diagnostics”, Avtomatika i telemekhanika, no. 11, pp. 155-165.
7. Sogomonyan, E.S. (1974), “Construction of self-testing in-built monitoring circuits for combinational devices”, Avtomatika i telemekhanika, no. 2, pp. 121-133.
8. Berger, J.M. (1961), “A note on error detecting codes for asymmetric channels”, Information and Control, Vol. 4, Iss. 1, pp. 68-73.
https://doi.org/10.1016/S0019-9958(61)80037-5
9. Collection of digital design Benchmarks, available at: http://ddd.fit.cvut.cz/prj/ Benchmarks/.
10. Yang, S. (1991), Logic synthesis and optimization benchmarks: User guide: Version 3.0”, Microelectronics Center of North Carolina (MCNC), North Carolina, USA.
11. Sapozhnikov, V., Sapozhnikov, Vl. and Efanov, D. (2015), “Modular sum code in building testable discrete systems”, Proceedings of the 13th IEEE East-West Design & Test Symposium (EWDTS'2015), Batumi, Georgia, September 26-29, 2015, pp. 181-187.
https://doi.org/10.1109/EWDTS.2015.7493133
12. Lala, P.K. (2001), Self-checking and fault-tolerant digital design, Morgan Kaufmann Publishers, San Francisco, USA.
13. Marouf, M.A. and Friedman, A.D. (1978), “Design of self-checking checkers for Berger codes”, Proceedings of the 8th Annual International Conference on Fault-Tolerant Computing, Toulouse, France, 1978, pp. 179-183.
14. Jha, N.K. (1991), “Totally self-checking checker designs for Bose-Lin, Bose and Blaum codes”, IEEE Transactions on Computer-Aided Design, Vol. CAD-10, pp.136-143.
https://doi.org/10.1109/43.62799
15. Pierce, D. and Lala, P.K. (1995), “Efficient self-checking checkers for Berger codes”, Proceedings of the 1st IEEE Int. On-Line Testing Workshop, pp. 238-242.
16. Metra, C., Favalli, M. and Ricco, B. (1995), “Novel Berger code checker”, Proceedings of the IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, 1995, November 13-15, p. 287.
17. Metra, C. and Lo, J.C. (1996), “Compact and high speed Berger code checker”, The 2nd IEEE International On-Line Testing Workshop, Biarritz, Franze, 1996, July 8-10, pp. 144-149.
18. Piestrak, S.J. (1995), Design of self-testing checkers for unidirectional error detecting codes, Oficyna Wydawnicza Politechniki Wrocavskiej, Wrocaw, Poland.
19. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Urganskov, D.I. (2002), “Universal structures of counters of ones by randommodulo”, Elektronnoe modelirovanie,Vol. 24, no. 4, pp. 65-81.
20. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Urganskov, D.I. (2005), “Block structure of binary counter of ones by random modulo”, Elektronnoe modelirovanie, 2005, Vol. 27, no. 4, pp. 47—56.
21. Das, D., Touba, N.A., Seuring, M. and Gossel, M. (2000), “Low cost concurrent error detection based onmoduloweight-based codes”, Proceedings of the 6th IEEE International On-Line Testing Workshop (IOLTW), Spain, Palma de Mallorca, July 3-5, 2000, pp. 171-176.
22. Goessel, Ì. and Sogomonyan, E.S. (1992), “Design of self-testing and self-checking combinational circuits with weakly independent outputs”, Avtomatika i telemekhanika, no. 8, pp. 150-160.
23. Busaba, F.Y. and Lala, P.K. (1994), Self-checking combinational circuit design for single and unidirectional multibit errors, Journal of Electronic Testing: Theory and Applications, Vol. 5, Iss. 5, pp. 19-28.
24. Saposhnikov, V.V., Saposhnikov, Vl.V., Goessel, M. and Morozov, A.A. (1998), “Method of formation of combinational self-checking devices with detection of all single faults”, Elektronnoe modelirovanie, Vol. 20, no. 6, pp. 70-80.
25. Morosow, A., Saposhnikov, V.V., Saposhnikov, Vl.V. and Goessel, M. (1998), “Self-checking combinational circuits with unidirectionally independent outputs”, VLSI Design, Vol. 5, Iss. 4, pp. 333-345.
https://doi.org/10.1155/1998/20389
26. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2015), “Applications of modular summation codes to concurrent error detection systems for combinational Boolean circuits”, Avtomatika i telemekhanika, no. 10, pp. 152-169.
https://doi.org/10.1134/S0005117915100112

Full text: PDF (in Russian)