Electronic Modeling

Vol 38, No 2 (2016)

https://doi.org/10.15407/emodel.38.02

CONTENTS

Mathematical Modeling and Computation Methods

  SYTNIK A.A., KLYUCHKA K.N., KOST’YAN N.L.
Method of Identification of a Dynamic Object by Means of the Integral Model


3-10
  KRAVTSOV H.A., PRYTULYUK I.A.
A New Algorithm Classification


11-26

Computational Processes and Systems

  SAPOZHNIKOV V.V., SAPOZHNIKOV Vl.V., EFANOV D.V., CHEREPANOVA M.R.
Modulo Codes with Summation in Concurrent Error Detection Systems. I. Ability to Detect Errors
by Modulo Codes in Data Vectors


27-48

Application of Modeling Methods and Facilities

  ARTEMCHUK V.O., KAMENEVA I.P., YATSYSHYN A.V.
Models of Representation and Data Transformation in the Problems of Environmental Monitoring in Urbanized Areas


49-66
  BALAMETOV A.B., HALILOV E.D., ISAYEVA T.M.
Increasing of Transmission Line Regime Modelling Accuracy Based on Current Regime Parametres


67-82
  KALINOVSKY J.A.,. BOYARINOVA Y.E.
Experimental Evaluation of Reducing the Amount of Calculations Using Representations of Hypercomplex Nonlinearities


83-92
  KONASHEVYCH O.I.
Advantages and Current Issues of Blockchain Use in Microgrids


93-104
  MAYEVSKYI A.V.
Solving the Problem of Operating Variables Identification in the Models of Natural System Dynamics


105-116

Color figures to the articles are in the insets

 

METHOD OF IDENTIFICATION OF A DYNAMIC OBJECT BY MEANS OF THE INTEGRAL MODEL

A.A. Sytnik, K.N. Klyuchka, N.L. Kost’yan

Èlektron. model. 2018, 38(2):03-10
https://doi.org/10.15407/emodel.38.02.003

ABSTRACT

The paper deals with a possibility of identification of dynamic objects parameters with the use of the second kind Volterra integral equations, equivalent to models based on differential equations. Examples of test problem solution are presented.

KEYWORDS

dynamic objects, identification of parameters, Volterra integral equations.

REFERENCES

1. Grop, D. (1979), Metody identifikatsii sistem [Methods of identification of systems], Mir, Moscow, Russia.
2. Verlan, A.F. and Moskalyuk, S.S. (1988), Matematicheskoe modelirovanie nepreryvnykh dinamicheskikh sistem [Mathematical modeling of continuous dynamic systems], Kiev, Naukova dumka, Ukraine.
3. Sytnik, A.A., Klyuchka, K.N. and Protasov, S.Yu. (2013), “The application of integrated dynamic models in solving the problem of parameter identification of electrical circuits”, Izvestiya Tomskogo politekhnicheskogo universiteta, Energetika, Vol. 322, no. 4, pp. 103-106.

Full text: PDF (in Russian)

A NEW ALGORITHM CLASSIFICATION

H.A. Kravtsov, I.A. Prytulyuk

Èlektron. model. 2018, 38(2):11-26
https://doi.org/10.15407/emodel.38.02.011

ABSTRACT

The author’s classification of algorithms based on the review of famous fundamental and modern works is presented. The author’s classification is different from already known ones due to the involved terms of high order algorithms and context-related algorithms.

KEYWORDS

classification, properties, discreteness, determinism, probability, context dependency.

REFERENCES

1. Maltsev, A. (1986), Algoritmy i rekursivnyie funktsii [Algorithms and recursive functions], Nauka, Moscow, Russia.
2. Knut, D. (1968), Iskustvo programmirovaniya. Tom1. Osnovnyie algoritmy [The Art of Computer Programming. Vol. 1. Fundamental Algorithms], Manual, Third Edition, translated from English by Prof. Kozachenko, Yu.V., Williams, Moscow, Russia.
3. Cormen, T.H., Leizerson, Ch.I., Rivest, R.L. and Shtain, K. (1990), Algoritmy: postroyeniye i analiz [Algorithms: structure and analysis], Williams, Moscow, Russia.
4. Alferova, Z.V. (1973), Teoriya algoritmov [Algorithm theory], Statistika, Moscow, Russia.
5. Subramaniam, V. (2008), Programming Scala. Tackle multicore complexity on Java virtual machine. The pragmatic programmers, Pragmatic bookshelf, Raleigh, North Carolina, Dallas, Texas, USA.
6. Pirs, B. (2012), Tipy v yazykakh programmirovaniya [Types in programming languages], Lambda Press and Dobrosvet, Moscow, Russia.
7. Foundational theories of classical and constructive mathematics (2011), Ed. by Giovanni Sommaruga, Springer: The Western Ontario Series in Philosophy of Science, Canada.
8. Makleyn, S. (1998), Kategorii dlya rabotayushchego matematika [Categories for the working mathematician], Translated from English, Fizmatlit, Moscow, Russia.
9. Lafore, R. (2002), Struktury dannykh i algoritmy v Java [Data structures and algorithms in Java], Piter, Moscow, Russia.
10. Gilbert, D. and Bernays, P. (1982), Osnovaniya matematiki. Logicheskie ischileniya i formalizatsiya arifmetiki [Mathematics bases. Logical calculus and arithmetic formalization], Nauka, Moscow, Russia.
11. Gödel, K. (1931), Über formal unentscheidbare S atze der Principia Mathematica und verwandter Systeme I, Monatshefte f ur mathematik und physic, Vol. 38, no. 1, pp. 173-198.
12. Barendregt, H.P. (1985), Lambda-ischislenie. Yego sintaksis i semantika [The Lambda calculus. Its syntax and semantics], Translated from English, Mir, Moscow, Russia.
13. Kleene, S.C. (1936), General recursive functions of natural numbers, Mathematische Annalen, Vol. 112, pp. 727-742.
14. Uspenskiy, V. (1979), Mashina Posta [Post–Turing machine], Nauka, Moscow, Russia.
15. Turing, A. (1936), On computable numbers, with an application to the Entscheidungs problem, Proc. of the London Mathematical Society, Series 2, Vol. 42, pp. 230-265, available at:http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf ( accessed August 2015).
16. Khorstman, C. (2012), Skala dlya neterpelivykh [Scala for the impatient], translated from English, DMK, Moscow, Russia.
17. Markov, A. (1954), “Algorithm theory”, Trudyi matematich. in-ta im. V. A. Steklova, Vol. 42, MAIK «Nauka/Interperiodika», Moscow, Russia.
18. Sedzhvik, R. and Ueyn, K. (2011), Algoritmy na Java [Algorithms in Java], Williams, Moscow, Russia.
19. Rublev, V. (2005), Osnovyi teorii algorimov [Fundamentals of algorithm theory], P.G. Demidov Yaroslavl State University, Yaroslavl, Russia.

Full text: PDF (in Russian)

MODULO CODES WITH SUMMATION IN CONCURRENT ERROR DETECTION SYSTEMS. I. ABILITY TO DETECT ERRORS BY MODULO CODES IN DATA VECTORS

V.V. Sapozhnikov, Vl.V. Sapozhnikov, D.V. Efanov, M.R. Cherepanova

Èlektron. model. 2018, 38(2):27-48
https://doi.org/10.15407/emodel.38.02.027

ABSTRACT

The analysis of modulo codes with summation of active bits properties in concurrent error detection systems for the data vector length change was performed. Dependence of errors of different types on different values of modulo, that are connected with the number of bits in data vectors and their calculation rules were determined. It was shown that modulo codes with summation do not detect the same rate of given multiplicity d errors for any data vector length without reference to modulo. It is shown in experiments that reduction of modulo value for real logic circuits does not result in the increase of the number of undetectable errors on its outputs in many cases.

KEYWORDS

concurrent error detection system, hardware redundancy, code with summation, Berger code, parity code,modulo code with summation, detection of errors in combinational circuits.

REFERENCES

1. Parkhomenko, P.P. and Sogomonyan, E.S. (1981), Osnovy tekhnicheskoy diagnostiki (optimizatsiya algoritmov diagnostirovaniya, apparaturnye sredstva) [Basics of technical diagnostics (optimization of diagnostic algorithms and equipment)], Energoatomizdat, Moscow, Russia.
2. McCluskey, E.J. (1986), Design logic principles: with emphasis on testable demicustom circuits, Prentice Hall PTR, New Jersey, USA.
3. Goessel, M. and Graf, S. (1994), Error detection circuits, McGraw-Hill, London, UK.
4. Drozd, A.V.,Kharchenko, V.S.,Antoshchuk, S.G., and et al. (2012), Rabochee diagnostirovanie bezopasnykh informatsionno-upravlyayuschikh sistem [On-line testing for safe instrumentation and control systems], National Aerospace University «KhAI», Kharkov, Ukraine.
5. Touba, N.A. and McCluskey, E.J. (1997), “Logic synthesis of multilevel circuits with concurrent error detection”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, pp. 783-789.
https://doi.org/10.1109/43.644041
6. Nicolaidis, M. and Zorian, Y. (1998), “On-line testing for VLSI – A compendium of approaches”, Journal of Electronic Testing: Theory and Applications, no. 12, pp. 7-20.
https://doi.org/10.1023/A:1008244815697
7. Mitra, S. and McClaskey, E.J. (2000), “Which concurrent error detection scheme to choose?”, Proceedings of International Test Conference, Atlantic City, NJ, USA, October 3-5, 2000, pp. 985-994.
8. Drozd, A.V. (2008), “Untraditional view on operational diagnostics of computing devices”, Control sciences, no. 2, pp. 48-56.
9. Slabakov, E.V. and Sogomonyan, E.S. (1981), “Self-checking computing devices and systems (review)”, Avtomatika i telemekhanika, no. 11, pp. 147-167.
10. Rao, T.R. and Fujiwara, E. (1989), Error control coding for computer systems, Prentice Hall, New York, USA.
11. Sogomonyan, E.S. and Slabakov, E.V. (1989), Samoproveryaemye ustroystva i otkazoustoychivye sistemy [Self-checking devices and failover systems], Radio i svyaz, Moscow, Russia.
12. Fujiwara, E. (2006), Code design for dependable systems: Theory and practical applications, John Wiley & Sons, New Jersey, USA.
13. Lala, P.K. (2007), Principles of modern digital design, John Wiley & Sons, New Jersey, USA.
14. Jha, N.K. (1991), “Totally self-checking checker designs for Bose-Lin, Bose and Blaum Codes”, IEEE Trans. Computer-Aided Design, Vol. CAD-10, pp.136-143.
https://doi.org/10.1109/43.62799
15. Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (1992), Samoproveryaemye diskretnye ustroystva [Self-checking digital devices], Energoatomizdat, St. Petersburg, Russia.
16. Bose, B. and Lin, D.J. (1985), “Systematic unidirectional error-detection codes”, IEEE Trans. Comput., Vol. C-34, pp. 1026-1032.
17. Das, D. and Touba, N.A. (1999), “Synthesis of circuits with low-cost concurrent error detection based on Bose-Lin codes”, Journal of Electronic Testing: Theory and Applications, Vol. 15, Iss. 1-2, pp. 145-155.
https://doi.org/10.1023/A:1008344603814
18. Piestrak, S.J. (1995), Design of self-testing checkers for unidirectional error detecting codes, Oficyna Wydawnicza Politechniki Wrocavskiej, Wrocaw, Poland.
19. Aksyonova, G.P. (1979), “Necessary and sufficient conditions for the design of totally checking circuits of compression by modulo 2”, Avtomatika i telemekhanika, no. 9, pp. 126-135.
20. Ghosh, S., Basu, S. and Touba, N.A. (2005), “Synthesis of low power CED circuits based on parity codes”, Proceedings of 23rd IEEE VLSI Test Symposium (VTS’05), Palm Springs, California, USA, May 1-5, 2005, pp. 315-320.
https://doi.org/10.1109/VTS.2005.80
21. Aksyonova, G.P. (2008), “On functional diagnosis of discrete devices under imperfect data processing conditions”, Problemy upravleniya, no. 5, pp. 62-66.
22. Berger, J.M. (1961), “A note on error detecting codes for asymmetric channels”, Information and Control, Vol. 4, Iss. 1, pp. 68-73.
https://doi.org/10.1016/S0019-9958(61)80037-5
23. Sapozhnikov, V., Sapozhnikov, Vl. and Efanov, D. (2015), “Modular Sum Code in Building Testable Discrete Systems”, Proceedings of 13th IEEE East-West Design&Test Symposium (EWDTS'2015), Batumi, Georgia, September 26-29, 2015, pp. 181-187.
https://doi.org/10.1109/EWDTS.2015.7493133
24. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Application of sum codes for synthesis of railway automation and remote control systems using programmable logic integrated circuits”, Avtomatika na transporte, Vol. 1, no. 1, pp. 84-107.
25. Sapozhnikov, V.V., Sapozhnikov, Vl.V. and Efanov, D.V. (2015), “Errors classification in information vectors of systematic codes”, Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie, Vol. 58, no. 5, pp. 333-343.
https://doi.org/10.17586/0021-3454-2015-58-5-333-343
26. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2010), “On sum code properties in concurrent error detection systems", Avtomatika i telemekhanika, no. 6, pp. 155-162.
27. Efanov, D.V., Sapozhnikov, V.V. and Sapozhnikov, Vl.V. (2015), “Applications of modular summation codes to concurrent error detection systems for combinational Boolean circuits”, Avtomatika i telemekhanika, no. 10, pp. 152-169.
https://doi.org/10.1134/S0005117915100112
28. Collection of digital design Benchmarks, available at: http://ddd.fit.cvut.cz/prj/Benchmarks/.
29. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D. and Blyudov, A. (2014), “On the synthesis of unidirectional combinational circuits detecting all single faults”, Proceedings of the 12th IEEE East-West Design & Test Symposium (EWDTS'2014), Kyiv, Ukraine, September 26-29, 2014, pp. 116-125.
https://doi.org/10.1109/EWDTS.2014.7027056

Full text: PDF (in Russian)

MODELS OF REPRESENTATION AND DATA TRANSFORMATION IN THE PROBLEMS OF ENVIRONMENTAL MONITORING IN URBANIZED AREAS

V.O. Artemchuk, I.P. Kameneva, A.V. Iatsyshyn

Èlektron. model. 2018, 38(2):49-66
https://doi.org/10.15407/emodel.38.02.049

ABSTRACT

Multidimensional domain models formalizing formulation of the problem of environmental monitoring of urbanized areas have been considered. Different approaches to the problem of reducing the dimension of the space of original signs, based on the criteria of information content of multidimensional data have been studied. The criterion of usefulness of the information observation, providing more efficient organization of the air monitoring network (by the example of the city of
Kiev) has been substantiated.

KEYWORDS

data models, information content measure, dimension reduction techniques, informative signs, the criterion of information usefulness.

REFERENCES

1. Bogolyubov, V.M., Klimenko, M.O., Mokin, V.B. and et al. (2010), Monitoring dovkillya: Pidruchnik [Environmental monitoring: A textbook], Ed. by Bogolyubov, V.M., VNTU, Vinnytsya, Ukraine.
2. Osnovy stiykogo rozvytku. Navchalny posibnik [Basics of sustainable development. Tutorial] (2005), Ed. by prof. Melnik, L.G., VTD «Universitetska kniga», Sumi, Ukraine.
3. Serdyutskaya, L.F. and Kameneva, I.P. (2000), Sistemnyi analiz i matematicheskoe modelirovanie
mediko-ekologicheskikh posledstviy avarii na ChAES i drugih tehnogennykh vozdeystviy
[System analysis andmathematicalmodeling ofmedical and environmental consequences of the
Chernobyl accident and other anthropogenic impacts], Medekol, Kyiv, Ukraine.
4. Upravlenie riskom: Risk. Ustoychivoe razvitie. Sinergetika [Risk management: Risk. Sustainable development. Synergetics], 2000, Nauka, Moscow, Russia.
5. Ayvazyan, S.A., Bushtaber, V.M., Enyukov, I.S. and Meshalkin, L.D. (1989), Prikladnaya statistika. Klassifikatsiya i snizhenie razmernostey [Applied statistics. Classification and reduced dimensions], Finansyi statistika, Moscow, Russia.
6. Busygin, B.S. and Miroshnichenko, L.V. (1991), Raspoznavanie obrazov pri geologogeofizicheskom prognozirovanii [Pattern recognition under geological and geophysical forecasting], DGU, Dnepropetrovsk, Ukraine.
7. Analiz stalogo rozvytku – globalny i regionalny konteksty. Ch. 1. Globalny analiz yakosti ta bezpeky zhittya lyudey. [Analysis of sustainable development – global and regional contexts. Ch.1. Global analysis of people life quality and security], (2010), Sc. superv. Zgurovskiy, M.Z., NTUU «KPI», Kyiv, Ukraine.
8. Kameneva, I.P. (2005), “Spatial-semantic representations of knowledge in geoecological investigations”, Geoinformatika, Vol. 4, pp.64-69.
9. Kameneva, I.P. (2005), “Probability models of knowledge representation in intellectual systems of decision making”, Iskusstvennyi intellekt: IPII NAN Ukrainy, Vol. 3, pp. 399-409.
10. Gavrilova, T.A. and Horoshevskiy, V.F. (2001), Bazy znaniy intellektualnykh sistem [Knowledge bases of Intelligent Systems], Piter, Saint Petersburg, Russia.
11. Petrenko, V.F. (1988), Psikhosemantika soznaniya [Psychosemantics of consciousness], MGU, Moscow, Russia.
12. Artemchuk, V.O. (2011), “Mathematical and computer tools for solving the problems of placement of observation points of air monitoring network”, Abstract of Cand. Sci. (Tech.) dissertation, 01.05.02, Pukhov Institute for Modeling in Energy Engineering, NAS of Ukraine, Kyiv, Ukraine.
13. Schomisyachnyi byuleten zabrudnennya atmosfernogo povitrya v Kyevi ta mistakh Kyivskoyi oblasti [Monthly bulletin of air pollution in the cities of Kyiv and Kyiv region], (2005-2012), Tsentralna geofizichna observatoriya, Kyiv, Ukraine.

Full text: PDF (in Russian)