Electronic Modeling

VOL 34, NO 6 (2012)

CONTENTS

Mathematical Methods and Models

  EVDOKIMOV V. F., PETRUSHENKO E. I., KUCHAEV V. A.
Integral Model of Three-Dimensional Rotating Magnetic Field of the Stator of Cylindrical EMF on the Basis of Symmetric Components.I

3-16

Informational Technologies

  BLYUDOV A. A., EFANOV D. V., SAPOZHNIKOV V. V., SAPOZHNIKOV Vl. V.
Formation of the Berger Modified Code with Minimum Number of Undetectable Errors of Informational Bits


17-30
  GADZHIEV A. G., KASUMOV A. B.
Investigation of Nonstationary Characteristics of a Single-Line Queueing System and Distribution of Time of the System Staying in the Fixed Set of States

31-40 

Computational Processes and Systems

  MIRSAIDOV M. M., SULTANOV T. Z., KHODZHAEV D. A.
Simulation of Dynamic Processes in Heterogeneous Viscoelastic Systems

41-54

Accuracy, Reliability, Diagnostics

  DOLGIN V. P.
Procedure of Authentication of the Leyderman Functions


55-62
  BULDYZHOV V. I.
Electrotechnical Analogs in Estimation of Information Safety Risks

63-72

Application of Modelling Methods and Facilities

  SHIDLOVSKAYA N. A., ZAKHARCHENKO S. N.
Modelling of Processes on RLC-Circuit to Spark-Erosion Load


73-82
  MELNIK I. V., TUGAY S. B.
Mathematical Modeling of Physical Processes on the Surface of Cooled Cathodes in the Glow Discharge Electron Sources


83-98

Short Notes

  BEZVESILNAYA E. N.
Mathematical Model of Temperature Field in the Flow of Motor Fuel Passing through Flowmeter


99-106
  KOLYADA V. A.
Three-Dimensional Simulation as a Tool for the Technical Vision Systems Design

107-114

Integral Model of Three-Dimensional Rotating Magnetic Field of the Stator of Cylindrical EMF on the Basis of Symmetric Components. I

EVDOKIMOV V. F., PETRUSHENKO E. I., KUCHAEV V. A.

ABSTRACT

The scalar system of integral equations (ScSIE) [1,2] will be transformed taking into account symmetries on Z coordinate in the projections of stator magnetic-field sources density k SC. The range of ScSIE definition, obtained after the indicated transformations, is part of stator magnetic core surface, lying higher than symmetry plane that is a XOY co-ordinate plane. This circumstance reduces considerably the calculations volume, related to matrix drafting of the approximating algebraic system and its decision, substantially.

KEYWORDS

integrated model, three-dimensional rotating magnetic field, symmetrical components, symmetry relations, electromagnetic stirrer, magnetic circuit, scalar system of integral equations.

REFERENCES

1.  Evdokimov, V.F., KuchaevA.A., Petrushenko, Ye.I. and  Kuchaev, V.A.(2012), “Model  of three-dimensional magnetic field of the  stator  of cylindrical electromagnetic stirrer, with allowance for magnetization  currents distribution on the circuit  surface. I”,  Elektronnoe modelirovanie, Vol. 34, no.  1, pp. 48-51.

2.Evdokimov, V.F., Kuchaev,  A.A., Petrushenko, Ye.I. and  Kuchaev, V.A.  (2012), “Model  of three-dimensional magnetic field of the  stator  of cylindrical electromagnetic stirrer, with allowance for magnetization  currents distribution on the circuit  surface. II”, Ibid., Vol. 34, no.  2, pp. 51-75.

Full text: PDF (in Russian)

Formation of the Berger Modified Code with Minimum Number of Undetectable Errors of Informational Bits

BLYUDOV A. A., EFANOV D. V., SAPOZHNIKOV V. V., SAPOZHNIKOV VI. V.

ABSTRACT

The problem of formation of the code with summation of «ones» which has the minimum whole number of undetectable errors of informational bits is considered in the paper. Formulas of calculation of number of undetectable errors are offered. The results of experimental research of codes are presented.

KEYWORDS

Berger code, data bits, undetectable error ,functional control, efficiency.

REFERENCES

  1. Berger, A note on error detection codes for asymmetric channels”, Information and Control, Vol. 4, Issue 3, pp. 68-73.
  2. Sapozhnikov, V.V., Sapozhnikov, Vl.V. (1992), Samoproveryayemyye diskretnyye ustroystva [Self-checking discrete devices],  Energoatomizdat, St. Petersburg, Russia.
  3. Goessel, M. and  Graf,ErrorDetectionCircuits, MeGraw-Hill,London, UK.
  4. Efanov, D.V., Sapozhnikov, V.V. andSapozhnikov, Vl.V.“The properties of the code with the summation in functional control circuits”,  Avtomatika i telemekhanika,
  5. Blyudov,The modified code with the summation for the organization of the control of combinational circuits”,  Avtomatika i telemekhanika,
  6. Morozov,Saposhnikov, Goessel, New self-checking circuits by use of Berger-codes”, 6th IEEE International On-Line Testing Workshop, Palma de Mallorca, Spain, 141-146.
  7. Moshanin, VI., Ocheretnij, V.  and  Dmitriev, A. (1998), “The Impact of Logic Optimization of Concurrent Error Detection”,  Proc. 4th IEEE International On-Line Testing Workshop, Capry, Italy, pp. 81-84.

Full text: PDF (in Russian)

Investigation of Non-stationary Characteristics of a Single-Line Queuing System and Distribution of Time of the System Staying in the Fixed Set of States

GADZHIEV A. G., KASUMOV A. B.

ABSTRACT

A single-line queuing system is considered, with Markov type input flow, depending on the number of customers in the system. The Laplace-Stieltjes transformation of distribution of time of staying in the fixed set of states has been obtained.

KEYWORDS

single-line system, speed of service, Markov process, double Laplace transform.

REFERENCES

  1. Ivnitskiy, V.A.Asymptotic study of the  stationary probability distribution of states of a class of single-line service systems (without memory)”, Problemy peredachi informatsii, Vol.5, Is. 3, pp. 8-105.
  2. Shumskaya,Kibernetika i sistemnyy analiz,
  3. Obzherok, Yu.E. and  Peschanskiy, A.I.Stationary characteristics of a single-line system with one  place for  waiting”,  Ibid.,  no. 5, pp. 51-62.
  4. Zaryadov, I.S. (2008), “Stationary characteristics of service in the G / M / n / r with a generalized service”,  Vestnik Rossiyskogo un-ta druzhby narodov. Ser. Matematika. Informatika. Fizika,  2, pp. 3-9.
  5. Kasumov, A.B. (2000), “Investigation single-line queuing system with unreliable servicing device with parameters depending on its condition”,  Vestnik Bakinskogo universiteta. Seriya fiz.-mat.nauk, no. 3, pp. 120-126.
  6. Kasumov, A.B.Study of  non-stationary  characteristics of  the length of line of a  single-line  queuing system depending on the number of requirements”, Elektronnoe modelirovanie, Vol.  32,  3, pp. 33-41.
  7. Ivnitskiy, V.A. and Kasumov, A.B. (2008), “Unsteady expectations of "impatient" requirements in the nodes of closed Markov queuing networks with the ability to bypass”, Nasushchnyye zadachi prikladnoy matematiki. Tezisy 9 Vserossiyskogo simpoziuma po prikladnoy i promyshlennoy matematike i Regionalnogo makro simpoziuma[The Urgent Tasks of Applied Mathematics,   Abstracts   9 All-Russian Symposium on Applied and Industrial Mathematics and macro Regional Symposium],  Stavropol-Kislovodsk, May 1-8, 2008,Obozreniye prikladnoy i promyshlennoy matematiki, 15, no.  6, pp. 1083-1084.
  8. Не,Ning-ka,  Yu,Zheng and  Ни,Da-xuan “Transient Distribution of the Length of Queuing Model with Input and Service Depending on the System State”,  Acta Scientiarum Naturalium Universita Sunyatseni. Scientiarum Naturalium, Vol.  43, no.  1, pp. 21-24.
  9. Son Yong, Sim and  Jo Tong Sop, Subak. 48-
  10. Bashtova, E.E. (2006), “Low load mode in a queuing system with random non-stationary intensity”, Matematicheskie zametki,  Vol.  80, no.  3, pp. 339-349.
  11. AlSeedy Rogab, Omirah and  Al-Ibraheem, Fawriah “New Transient Solution for the М/М/??» Queue with Various Arrival and Departure Rate”, J. of Applied Mathematics and Computing, Vol.135,. 425-428.
  12. Wang Yimin, Limin (2003), “Transient Distribution of the Length and Waiting Time of GI/G1 Queu­ing System”, Mathematical Theory and Applications, Vol. 23, no. 3, pp. 43-45.

Full text: PDF (in Russian)

Simulation of Dynamic Processes in Heterogeneous Viscoelastic Systems

MIRSAIDOV M. M., SULTANOV T. Z. HODZHAEV D. A.

ABSTRACT

Mathematical model, methods and algorithms for the decision of a problem on nonlinear forced vibrations of three-dimensional heterogeneous viscoelastic systems are presented. The considered problem with use of the method of finite elements is reduced to the high order system of nonlinear integro-differential equations which is solved by Newmark's method.. The example of calculation of soil damtaking info account nonlinear, viscoelastic properties of the material and design features of the structure is considered. A number of new mechanical effects have been revealed

KEYWORDS

earth dams, heterogeneous system, nonlinear oscillations, the stress-strain state, viscoelasticity.

REFERENCES

  1. Natarius, Ya.I. (1984), Povysheniye seysmostoykosti plotin iz gruntovykh materialov [Increasing seismic stability of dams of soil materials],  Energoatomizdat, Moscow, Russia.
  2. Mirsaidov, M.M. and  Troyanovskiy, E.I. (1990),  Dinamika neodnorodnykh sistem s uchetom vnutrenney dissipatsii i volnovogo unosa energii  [The dynamics of inhomogeneous systems taking into account the internal dissipation and  wave entrainment of energy], Fan,  Tashkent, Uzbekistan.
  3. Mirsaidov, M. and  Godovannikov, A.M. (2008), Seysmostoykost  sooruzheniy   [Earthquake Engineering], Tashkent,  Uzbekistan,
  4. Mirsaidov, M.M. (2010), Teoriya i metody rascheta gruntovykh sooruzheniy na prochnost i seysmostoykost [Theory and methods of calculation of ground facilities for strength and seismic stability],  Fan, Tashkent, Uzbekistan.
  5. Shirinkulov, T.Sh. and  Zaretskiy, Yu.K. (1986), Polzuchest i konsolidatsiya gruntov  [Creep and consolidation of soils], Fan, Tashkent, Uzbekistan.
  6. Meschyan, S.R. (1974), Mekhanicheskiye svoystva gruntov i laboratornyye metody ikh opredeleniya [Mechanical properties of soils and laboratory methods for their determination],  Nedra, Moscow, Russia.
  7. Vyalov, S.S. (1978), Reologicheskiye osnovy mekhaniki gruntov [Rheological basics of soil mechanics], Vysshaya shkola, Moscow, Russia.
  8. Koltunov, M.A. (1976), Polzuchest  i relaksatsiya  [Creep and relaxation], Vysshaya shkola,  Moscow, Russia.
  9. Ilyushin, A.A. and Pobedrya, B.E. (1970), Osnovy matematicheskoy teorii termo-vyazkouprugosti [Fundamentals of the mathematical theory of thermo-viscoelasticity],  Nauka, Moscow, Russia.
  10. Verlan, A.F. and  Sizikov, V.S. (1986), Integralnyye uravneniya: metody, algoritmy, programmy [Integral equation methods, algorithms and programs],  Naukova Dumka, Kiev, Ukraine.
  11. Filatov, A.N. (1974), Asimptoticheskiye metody i teoriya differentsialnykh i integro-differentsialnykh uravneniy  [Asymptotic methods and the theory of differential and integro-differential equations],  Fan, Tashkent, Uzbekistan.
  12. Mirsaidov, M., Troyanovskiy, I.E. and  Balakirov, A.Izvestiya AN RUz. Seriyatekhn. nauk., no. 6, pp. 32-
  13. Badalov, F.B. (1987), Metody resheniya integralnykh i integro-differentsialnykh uravneniy nasledstvennoy teorii vyazkouprugosti [Methods for solving integral and integro-differential equations of the hereditary theory of viscoelasticity], Mekhnat, Tashkent, Uzbekistan.  
  14. Badalov, F.B., Eshmatov, X. and  Yusupov, M. (1987),  “On some methods for solving integral and differential equations encountered in problems of viscoelasticity”,  Prikladnaya matematika i mekhanika, Vol. 51,  no. 5, pp. 867-871.
  15. Bate, K. and  Vilson, E. (1982),  Chislennyye metody analiza i MKE [Numerical methods of analysis and FEM],  Stroyizdat, Moscow, Russia.
  16. Fadeev, D.K. and  Fadeeva, V.N. (1960), Vychislitelnyye metody lineynoy algebry [Computational methods of linear algebra],  Fizmatgiz, Moscow, Russia.
  17. Rzhanitsyn, A.R. (1968), Teoriya polzuchesti  [Creep theory],  Stroyizdat, Moscow, Russia.

Full text: PDF (in Russian)