Electronic Modeling

VOL 34, NO 1 (2012)

CONTENTS

Mathematical Methods and Models

  MURTY K. N., REDDY K. V.
Stability and Sensitivity Analysis of Digital Filters under Finite Word Length Effects via Normal Form Transformation


3-14
  MELNIK I. V., TUGAI S. B.
Anode Plasma Boundary Geometry Modeling in High-Voltage Glow Discharge Triode Electrode Systems Using the Photograph Computer Analysis


15-28
  LISTROVOY S. V., MINUKHIN S. V.
Method for Solving a Problem of Minimal Vertex Covering in Arbitrary Graph and a Problem of Minimal Coverage


29-44

Accuracy, reliability, diagnostics

  MAKARICHEV A. V.
Asymptotic Time Distribution from the Time of Failure to Out-Order Time from the Sets of Failure Conditions of Cyclic Systems to the Sets of Complex Restorable Systems


45-68
  FARKHADZE E. M., MURADALIEV A. Z. , RAFIEVA T. K., ISMAILOVA S. M.
Probability Estimate of the Rate of Change of Transformers Diagnosis Indices

69-80

Application of Modelling Methods and Facilities

  EVDOKIMOV V. F., KUCHAEV A. A. , PETRUSHENKO E. I., KUCHAEV V. A.
Model of Three-Dimensional Magnetic Field of the Stator of Cylindrical Electromagnetic Stirrer with Allowance for Magnetization Currents Distribution on the Magnetic Cicuit Surface


81-92
  DOBROVOLSKY V. K., KOSTYUK V. O., STOGNIY A. V.
Technical and Economic Estimations in Nuclear Power Engineering: Modeling and Computations. I


93-108
  MAKEYEV V. T., LYAPA N. N., LATIN S. P., TROFIMENKO P. E.
Methods of Detecting Corrections for Nonlinearity and Interplay of Disturbing Factors


109-120

Short notes

  ZAVOROTNY A. L., KASYANYUK V. S.
Mathematical Modeling of the «Electron Nose» as a Problem of Paretho-Optimization

121-125

Stability and Sensitivity Analysis of Digital Filters under Finite Word Length Effects via Normal Form Transformation

К. N. Murty *, К. V. Reddy **
Sreenidhi Institute of Science & Technology
*Department of Humanities and Science (Mathematics),
**Department of Electronics and Communication Engineering,
(Yamnampet, Ghatkesar, Hyderabad - 501 301. A.P. India,
*e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

ABSTRACT

Main objective of this paper is to present the general solution of the first order matrix difference system X(n+1) = AX(n)B + +C(n)U(n)D(n) and then study the stability and sensitivity analysis of the digital filters via eigenvalue sensitivity and normal form transformations.

KEYWORDS

digital filters, difference equations, exponentiation of a matrix, stability and sensitivity analysis.

REFERENCES

  1. Chen C. T. Linear System Theory and Design. Engleweed Cliff. — 3rd edition. — NJ, USA: Prentice Hall, 1999.
  2. Hsien-Ju-Ko. Stability analysis of digital filters under finite-word length effects via normal forms transformation//Asian J. Health and Information Sciences. — 2006. — 1. — P. 112— 121.
  3. Ko H. J., Ko W. S. Sensitivity minimization for control implementation fixed point ap- proach//Proc. 2004 American Control Conference (ACC 2004). — Boston, MA, USA, 2004.
  4. Gopal M. Modern control systems. — New Age International (p) Ltd, Publishers (formerly Wiley Eastern Ltd), 1995.
  5. Chen B. S., KuoC. T. Stability analysis of digital filters under finite word length effects// IEEE Proc. — 1989. — 136, N4,— P.167—172.

Full text: PDF (in Russian)

Anode Plasma Boundary Geometry Modeling in High-Voltage Glow Discharge Triode Electrode Systems Using the Photograph Computer Analysis

MELNIK I. v., TUGAI S. B.

ABSTRACT

A method for defining the anode plasma boundary geometry in high-voltage glow discharge triode electrode systems, based on computer analysis of the discharge gap photograph, is considered in the article. Electron-optical properties of the discharge gap are analysed and focal parameters of the formed electron beam are also estimated. The above investigations confirm the prospects of elaboration of powerful pulse electron sources based on high-voltage glow discharge. Such sources can be widely used in the modern electron beam technologies.

KEYWORDS

electron-beam technologies, digital optics, sources of electrons of high-voltage glow discharge, the anode plasma, computer image analysis, approximation, recognition

REFERENCES

  1. Zavyalov, M.A.,  Creyndel, Yu.E.,  Novikov, A.A.  and  Shanturin, L.P.  (1989),  Plazmennye protsessy v tekhnologicheskikh elektronnykh pushakh [Plasma processes in technological electron guns], Energoatomizdat, Moscow, Russia. 
  2. Ladokhin, S.V., Levitskiy, N.I., Chernyavskiy, V.B. and et al. (2007), Elektronno-luchevaya plavka v liteynom proizvodstve  [Electron beam melting in foundry industry],  Stal, Kiev, Ukraine.  
  3. Denbnovetskiy, S.V.,  Melnik, V.I., Melnik, I.V. and Tugay, B.A. (2005), “Gas discharge electron guns and their application in industry”, Elektronika i svyaz. Tematichesky vyp., Problemy elektroniki, ch. 2,  pp. 84-87.
  4. Denbnovetskiy, S.V., Melnik, V.I., Melnik, I.V. and Tugay, B.A. (2010), “ Modeling of transportation short-focus electron beams from low to high vacuum considering the variation of the thermal velocities of electrons”, Prikladnaya fizika, no. 3, pp.  84-90.
  5. Rykalin, N.N., Zuev, I.V. and Uglov, A.A. (1978), Osnovy elektronno-luchevoy obrabotki materialov [Basis of electron beam processing of materials] , Mashinostroenie, Moscow, Russia.
  6. Melnik, I.V. and Tugay, S.B. (2010), “Methods of modelling of technological sources of electrons of high-voltage glow discharge”, Electronnoe  modelirovanie, Vol.  32, no. 6, pp. 31-43.
  7. Melnik, I.V. (2007), “Research of  electron-ion optics of the electrode systems of high-voltage glow discharge using methods of computer image analysis”, Ibid., Vol. 29, no. 1, pp.  45-58.
  8. Denbnovetskiy, S.V.,  Melnik, V.I., Melnik, I.V. and Tugay, B.A. (2009), Approximation of provisions and forms the border of the anode plasma in electron sources of high-voltage glow discharge”, Elektronika i svyaz. Tematichesky vyp., Elektronika i nano-tekhnologii, Part  2, pp. 83-88.
  9. Melnik, I.V. and Tugay, S.B. (2011), “Research of the electron-optical properties of triode electrode systems of high-voltage glow discharge based on the position and shape of the border of the anode plasma”, Elektronika i svyaz, Vol. 61, no. 2, pp. 9-13.
  10. Melnik, I.V. (2009), Systema naukovo-tekhnichnykh rozrakhunkiv MatLab ta ii vykorystannya dlya pozv`yazannya zadach iz elektroniky, Navchalnyy posibnyk u 2-kh tomakh. Tom 1.  Osnovy roboty ta funktsii systemy,  [System scientific computations MatLab and its use for solving problems of electronics. Tutorial in 2 volumes. Volume 1. Basics of  operation and functions of system], The University "Ukraine", Kyiv, Ukraine.
  11. Melnik, I.V. (2009), Systema naukovo-tekhnichnykh rozrakhunkiv MatLab ta ii vykorystannya dlya rozv`yazannya zadach iz elektroniky, Navchalnyy posibnyk u 2-kh tomakh. Tom 2.  Osnovy programuvannya ta rozv`yazannya pryklagnykh zadach [System scientific computations MatLab and its use for solving problems of electronics. Tutorial in 2 volumes. Volume 2. Basics of programming and solving applied problems],   The University "Ukraine", Kyiv, Ukraine.
  12. Denbnovetskiy, S.V, Melnik, V.I., Melnik, I.V. and  Tugay, B.A. (1998),  “Investigation of Forming of Elec­tron Beam in Glow Discharge Electron Guns with Additional Electrode”, XVIII  Inter­national Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV),  XVIII ISDEIV Proc. Vol. 2., The Netherlands Eindhoven, Technical Univer­sity, August 17—21, 1998, pp. 637-640.
  13. Romanov, V.Yu. (1992),  Populyarnye formaty khraneniya graficheskikh izobrazheniy  [Popular formats for storing graphic images], Unitekh, Moscow, Russia.
  14. Volodarskiy, E.T.,  Malinowskiy, B.N. and Tuz, E.M.  (1987), Planirovanie I organizatsiya eksperimenta [Planning and organization of the experiment],  Vyshcha shkola, Kiev, Ukraine.
  15. Vasiliev, V.P. (1988), Chislennye metody resheniya ekstremalnykh zadach [Numerical methods for solving extremal problems],  Uch. Posobie dlya vuzov, Nauka, Moscow, Russia. 
  16. Schiller, Z., Haisig, U. and  Pantser, Z.  (1980), Elektronno-luchevaya tekhnologiya [Electron-beam technology], Energiya, Moscow, Russia.

Full text: PDF (in Russian)

Method for Solving a Problem of Minimal Vertex Covering in Arbitrary Graph and a Problem of Minimal Coverage

LISTROVOY S. V., MINUKHIN S. V.

ABSTRACT

The authors propose approximate algorithms for solving the problem of the minimal vertex covering of arbitrary graphs and the problem of minimal coverage on the basis of their reduction, respectively, to the problems of quadratic and nonlinear Boolean programming, their specificity allowing to construct algorithms with time complexity not exceeding O(mn2), where in the case of solving the problem of minimal vertex covering of arbitrary graphs n is the number of vertices in the graph, m is the number of edges in the graph, and in the case of solving the problem of minimal coverage n is the number of columns in the matrix, m is the number of rows in B, It is shown that this error in the solution of these problems by the proposed procedures A1 and A2 does not exceed 5 % at the density of rows of B matrix 0.5 or more.
The proposed algorithm can be used to effectively planning for the allocation of resources in GRID-systems in real time with a rather severe restrictions on the time of solving problems, if allowed time planning lies in range from 5 to 100 ms

KEYWORDS

vertex covering in graphs, mininal coverage columns of the rows in the matrix consisting of ones and zeros, GRID.

REFERENCES

  1. Christofides, N. (1978), Teoriya grafov. Algoritmicheskiy podkhod [Graph Theory. Algorithmic approach], Mir, Moscow, Russia. 
  2. Ponomarenko, V.S. and Listrovoy, S.V. (2008), “Method of solution of the minimum coverage as a planning tool in GRID”, Problemy upravlrniya, no. 3, pp. 78-84. 
  3. Lipskiy, V. (1988), Kombinatorika dlya programmistov [Combinatorics for programmers], Mir, Moscow, Russia.
  4. Shor, N.Z. and Stetsenko, S.I. (1989), Kvadratichnye ekstremalnye zadachi i nedifferentsiruemaya optimizatsiya [Quadratic extremal problems and not differentiable optimization],  Naukova dumka, Kiev, Ukraine.
  5. Papadimitriu, K. and  Stayglits, M. (1985),  Kombinatornaya optimizatsiya. Algoritmy i slozhnost [Combinatorial optimization. Algorithms and complexity],  Mir, Moscow, Russia.
  6. Ponomarenko, V.S., Listrovoy, S.V., Minuchin, S.V. and Znakhur, S.V. (2008),  Metody i modeli planirovaniya resursov v GRID-sistemakh [Methods and models of resource planning in GRID systems], ID INZHEK,  Kharkov, Ukraine.
  7. Listrovoy, S.V. and Gul, A.Yu. (1999), “Method for the solution of the problem of the minimum coverage based on the ranking approach”,  Electronnoe modelirovanie, Vol. 21, no. 1, pp.  58-70.
  8. Listrovoy, S.V., Gul, A.Yu. and  Listrovaya, E.S.  (1998), “Exact algorithm for problem solution of the minimum coverage”, Sbornik nauchnykh trudov. Informatika, Naukova dumka,  Vol. 5,  pp. 32-36.
  9. Kormen, T., Leizerson, Ch. and  Rivest, R. (2002),  Algoritmy: postroenie i analiz [Algorithms: design and analysis], MTSNMO, Moscow, Russia.
  10. Gandhi, R., Khuller, S. and Srinivasan, A. (2004), ”Approximation Algorithms for partial Covering Prob­lems”, Journal of Algorithms, Vol. 53,  Issue 1, pp. 55-84.
  11. Alon, N., Awerbuch, B., Azar, Y. and  et. al. (2003), « The online set cover problem” , Proc. STOC'03, June 9-11, 2003, San Diego, California, USA, pp. 100-105.
  12. Chvatal, V. (1979), A greedy-heuristic for the set covering problem”, Math. Oper. Res., no. 4, pp. 233-235.
  13. Slavik, P. (1997), A tight analysis of the greedy algorithm for set cover”, Journal of Algorithms, no. 25, pp. 237-254.
  14. Hassin, R. and Levin, A. (2005), “A Better-than-greedy Approximation Algorithm for the Minimum Set Cover Problem”, SIAM J. Computing, Vol. 35, no. 1, pp. 189-200.
  15. Listrovoy, S.V. and  Minuchin, S.V. (2009), “General approach to solving optimization problems in distributed computing systems and the theory of construction of intelligent systems”, Problemy upravleniya i informatiki,  no. 2,  pp.  47-63.

Full text: PDF (in Russian)

Asymptotic Time Distribution from the Time of Failure to Out-Order Time from the Sets of Failure Conditions of Cyclic Systems to the Sets of Complex Restorable Systems

MAKARICHEV A. V.

ABSTRACT

The asymptotic distributions of time are obtained when the sets of circular united complex sys­tems with reserve of time are in the out order. This occurs provided that the systems number in­creases in inverse proportion to failure intensity of complex system elements in such a way that the total load on the queueing system is bounded from the top by the value below unit with the system units maintenance as far as they arise.

KEYWORDS

the complexes of restorable complex systems, float time, many failed states.

REFERENCES

  1. Makarichev, A.V. (2004), “Reliability of the complexes of complicate restorable systems”,  Elektronnoe modelirovanie, Vol. 26, no.  2, pp. 57-77.
  2. Makarichev, A.V. (2003), “Asymptotic evaluation of the regeneration of the complexes of complicate restorable   systems under various      disciplines of service”, Ibid., Vol.  25, no.  2, pp.  83-97.
  3. Klimov, G.P. (1967), Stokhasticheskie sistemy obsluzhivaniya [Stochastic service systems],  Nauka, Moscow, Russia.
  4. Cox, D. And  Smith, V. (1967), Teoriya vosstanovleniya [Theory of recovery], Sov. radio, Moscow, Russia. 
  5. Makarichev, A.V. (2007), “Reliability of cyclic combinations to the  complex of complicate restorable systems with float time” I., Elektronnoe modelirovanie, Vol. 29, no.  5, pp. 63-73.
  6. Makarichev, A.V. (2007), Reliability of cyclic combinations to the  complex of complicate restorable systems with float time” II, Ibid, Vol. 29, no. 6,  pp. 93-105.

Full text: PDF (in Russian)