Electronic Modeling

VOL 36, NO 4 (2014)

СОДЕРЖАНИЕ

Mathematical Modeling and Computation Methods

  SAUKH S.E., BORISENKO A.V., DZHIGUN E.N.
Model of the Trunk Transmission Lines Network in the Problems of Planning of the Electric Power Systems Development


3-14
  KULAKOV Yu.A., VOROTNIKOV V.V.
Clusterization of Associative Network Based on Polynomially Computable Spectral Invariants of Graphs


15-24
  SIDORENKO S.I., ZAMULKO S.A., KONOREV S.I.
Generalized Algorithm of Computational Material Design


25-32

Computational Processes and Systems

  ROMANYUK V.V.
Admissibility of Approximate Solution of the Infinite Antagonistic Game on Unit Hypercube at Specific Sampling in Each of Its Dimensions


33-50

Parallel Computations

  PALAGIN V.V., GONCHAROV A.V., UMANETS V.M.
Polynomial Algorithms of Joint Discrimination of Signals and Estimation of Their Parameters against a Background of Asymmetrical Non-Gaussian Interferences


51-66
  KUBITSKYI V.I., ZHUKOV I.A.
Implementation of Parallel Method of Encoding the Lagrange Method


67-80

Application of Modelling Methods and Facilities

  APARTSIN A.S., SIDLER I.V.
Integral Models of Development of Electric Power Systems with Allowance for Ageing of Equipment of Electric Power Plants


81-88
  VYNNYCHUK S.D., SAMOILOV V.D.
Determination of Current Ribs of Graphs of Commutation Structures Based on Analysis of the Fundamental System of Cycles


89-100
  ZAKHARZHEVSKY O.A., AFONIN V.V.
Allowance for the Construction of Windings of Asynchronous Machine in Matlab Modeling

101-116

Short Notes

  POLISSKIY Yu.D.
Algorithm of Implementation of Complex Operations in the System of Residual Classes with the Help of Numbers Presentation in Reverse Codes


117-123

Model of the Trunk Transmission Lines Network in the Problems of Planning of the Electric Power Systems Development

SAUKH S.E., BORISENKO A.V., DZHIGUN E.N. 

ABSTRACT

Algorithms of formation and parameter identification of a mathematical model of the equivalent network of high-voltage transmission lines have been proposed. These algorithms provide a significant reduction in the number of model lines and nodes and allow the model to adequately reflect the basic properties of the network of trunk lines. 

KEYWORDS

trunk transmission lines,  equivalent network, model intersystem power flows, PTDF-matrix. 

REFERENCES

1. Veselov, F.V., Kurilov, A.E. and  Khorshev, A.A. (2006), “The construction and use of models of linear programming in the energy research tasks”,  Sbornik trudov konf. “Modelirovanie-2006”, Kiev, IPME im. Pukhova, G.E.  NAN Ukrainy [Proceedings Conf. "Simulation-2006”], Kiev, IPME, pp. 147-152.
2.
Voropay, N.I. and  Trufanov, V.V. (2002), Mathematical modeling of electrical power systems in modern conditions”, Elektrichestvo, no. 10, pp. 6-12.
3.
Borysenko, A.V. and  Saukh, S.E. (2009),  “Equilibrium model input generation capacity in conditions of imperfect competition”,  Novyny energetyky, no. 11, pp. 36-39; no. 12, pp. 23-39.
4.
Kostyukovskyy, B.A., Shulzhenko, S.V., Holdenberg, I.Ya. and  Vlasov, S.V.  (2002), “Methods and tools for research development prospects of electricity in the conditions of market relations”,  Problemy zagalnoyi enenergetyky, no.  2, pp. 6-13.
5. Hobbs, B.F., Metzler, C.B. and Pang, J.S. (2000), “Strategic gaming analysis for electric power system: an MPEC approach”, IEEE Transactions on Power Systems, Vol. 15, no. 2, pp. 638-645.
6. Poletti, C. (2013), The economics of electricity markets: theory and policy, Edward Elgar Publishing, Northampton, Massachusets, USA.
7. Bigger, D. (2003), “The economic theory of electricity transmission”, available at: http://www.ergo.ee.unsw.edu.ua/Egy_MktWkshp/accc_biggar_paper.pdf
8. Purchala, K., Meeus, L., Van Dommelen, D. and  Belmans, R. (2005), “Usefulness of DC power flow for active power flow analysis”, IEEE Power Engineering Society General Meeting,  Vol. 1, available at: http://www.esat.kuleuven.be/electa/publicaions/_Hlt390410574_Hlt390410575_Hlt3904105760_Hlt3904105770BM_1_BM_2_BM_3_BM_4_fulltexts/pub_1456.pdf
9. Cheng, Xu. (2005), “PTDF-based power system equivalents”, IEEE Transactions on Power Systems, Vol. 20, no.  4, pp. 1868-1876.
10. Duthaler, C., Kurzidem, M., Emery, M. and  Andersson, G. (2008), “Analysis of the Use of PTDF in the UCTE Transmission Grid”, 16th Power Systems Computation Conference, Glasgow, 2008, available at: http://infoscience.epfl.ch/record/153995/files/0807_PSCC_PTDF-Duthaler.pdf
11. Chong Suk Song, Chang Hyun Park, Minhan Yoon, Gilsoo Jang  (2011),  “Implementation of  PTDFs and LODFs for Power System Security”, Journal of International Council on Electrical Engineering,  Vol. 1, no. 1, pp. 49-53.
12.
Saukh, S.E. (2013), Methods of computer simulation of competitive equilibrium  in  the  electric  power  markets”, Elektronnoe modelirovanie, Vol. 35, no. 5, pp. 11-26.
13.
Saukh, S.E. (2011), Mathematical  modeling  of  power  chains”, Ibid., Vol. 33, no.  3, pp. 3-12.
14. Saukh, S.E. (2007), “CR factorization large-scale  sparse  matrixes  method”,  Ibid., Vol. 29, no,  6, pp. 3-22. 

Full text: PDF (in Russian)

Clusterization of Associative Network Based on Polynomially Computable Spectral Invariants of Graphs

KULAKOV Yu.A., VOROTNIKOV V.V.

ABSTRACT

Application of polynomial invariants of graphs is considered as basic information for breaking up of a graph. The use of the objective function — a self-weighted sum of squares of distances between the network nodes is offered for clusterization of the network nodes. The method of the Lagrange indefinite multipliers was used for minimization of the objective function, the condition of symmetry and positive definiteness of the Laplace matrix.

KEYWORDS

clusterization, associative network, spectral analysis, graph invariant, eigenvalues, characteristical polynomial. 

REFERENCES

1. Andreev, A.M. and  Mozharov, G.P. Analysis of the main characteristics of computer systems using spectral graph theory”, available at: http://www.technomag.edu.ru/doc/ 233774.html
2.
Vorotnikov, V.V. and  Kulakov, Yu.A. (2013), “Determination of the structural complexity of decentralized telecom networks of special control systems by methods of spectral graph theory”, Elektronika i svyaz,  no. 1, pp. 110-117.
3. Tsvetkovich, D., Dub, M. and  Zakhs, Kh. (1984), Spektry grafov: Teoriya i primenenie. Per. s angl. Korolyuka, V.S.; pod red. Korolyuka, V.S., Izd. 2-e [Spectra of graphs: Theory and application. Trans. from English. Korolyuk, V.S.; ed. Korolyuk, V.S., Ed. 2], Naukova dumka, Kiev, Ukraine.
4. Aiello, M., Andreozzi, F., Catanzariti, E. and et al. (2007), “Fast Convergence for Spectral Clustering”, 14th International Conf. on Image Analysis and Processing (ICIAP-2007), pp. 641-646.
5.
Buvaylo, D.P. and Tolok, V.A. (2002), “Quick high-performance algorithm for separating non-regular graphs”,Visnyk Zaporizkogo derzhavnogo universytetu, no. 2, p. 10.
6.
Ryashko, L.B. and  Bashkyrtseva, I.A.  (2013), “Spectral criterion of stochastic stability of invariant manifolds”, Kibernetika i sistemnyy analiz, no.  1, pp. 82-90.
7.
Yakobovskiy, M.V. (2004), “Processing of the data grid on distributed computing systems”, Voprosy atomnoy nauki i tekhniki. Ser. Matematicheskoe modelirovanie fizicheskikh protsessov, Vol. 2, pp. 40-53.
8. Barabasi
, A. and  Albert, R. (1999), “Emergence of  Csaling in Random Networks”,  Science,  Vol. 286, pp. 500-512.
9. Parlett, B. (1983), Simmetrichnaya  problema   sobstvennykh znacheniy. Chislennye metody.  Per. s angl.  [Symmetric  problem of eigenvalues.  Numerical Methods. Transl. from English], Mir, Moscow, Russia. 

Full text: PDF (in Russian)

Generalized Algorithm of Computational Material Design

SIDORENKO S.I., ZAMULKO S.A., KONOREV S.I.

ABSTRACT

Application of polynomial invariants of graphs is considered as basic information for breaking up of a graph. The use of the objective function — a self-weighted sum of squares of distances between the network nodes is offered for clusterization of the network nodes. The method of the Lagrange indefinite multipliers was used for minimization of the objective function, the condition of symmetry and positive definiteness of the Laplace matrix.

KEYWORDS

computational materials design, new materials with predetermined properties, direct problem, inverse problem.

REFERENCES

1. Ogorodnikov, V.V., Pokropivnyy, V.V.  and  Shtern, M.B. (2008), Kompyuternoe modelirovanie v materialovedenii. Neorganicheskoe materialovedenie: Entsikloped. izd. V 2 t. Pod red. Skorokhoda, V.V., Gnesina, G.G. T. 1: Osnovy nauki o materialakh  [Computer simulations in materials science. Inorganic materials.  Encyclopedias. Ed.  In 2 v.  Ed. Skorokhod, V.V., Gnesin, G.G.  Vol. 1. The Basics of materials science], Nauk. dumka,  Kiev,  Ukraine, pp. 1092-1145.
2. Billinge, S.J.L., Rajan, K. and  Sinnott, S.B. (2006), “From Cyberinfrastructure to Cyberdiscovery in Materials Science: Enhancing outcomes in materials research, education and outreach”,  Report from a workshop held in Arlington, August 3-5, 2006, Virginia.
3. Iwata, S., Ohsawa, Y., Tsumoto, Sh. and et al. (2008), Communications and Discoveries from Multidisciplinary Data, Springer.
4. Rajan, K. (2005), “Materials informatics”, Materials Today, Vol. 8, pp. 38-45.
5. Raabe, D. (1998), Computational Materials Science, Wiley-VCH, Weinheim.
6. Sydorenko, S.I. and  Zamulko, S.O. (2013),  “Direct and inverse problems in computer construction materials”, Naukovi visti NTUU «KPI»,  no.  4, pp. 148-151.
7. Toyohiro, Chikyow (2006), “Trends in Materials Informatics in Research on Inorganic Materials”, Quarterly Review, no. 20, pp. 59-71.
8. Changwon  Suh,   Arun  Rajagopalan,  Xiang  Li and Krishna  Rajan (2002),  “The Application of Principal Component Analysis to Materials Science Data”,  Data Science Journal, Vol. 1, pp. 19-26.
9. Frenkel, D. and  Smit, B. (1996), Understanding Molecular Simulations: From Algorithms to Applications, Academic Press, San Diego.
10. Yamamoto, T., Ohnishi, S., Chen, Ying   and  Iwata, S. (2009),  “Effective Interatomic  Potentials Based on The First-Principles Material Database”,  Data Science Journal, Vol. 8, pp. 62-69.
11. Gang Yu, Jingzhong Chen and  Li Zhu. (2009), “Data mining techniques for materials informatics: datasets preparing and applications”, Second International Symposium on Knowledge Acquisition and  Modeling, IEEE, Vol 2, pp. 189-192.
12. Abicht, L., Freikamp, H. and  Schumann, U. (2006), “Identification of Skills Needs in Nanotechnology”,  CEDEFOP Panorama Series, 2006, available at: http://www.trainingvillage.gr/etv/Information_resources/Bookshop/publication_details.asp?pub_id=426
13. Lei Liu, Hui Zhang, Jianhui Li and et al. (2012), “Building a Community of Data Scientists: an Explorative Analysis”, Data Science Journal, Vol. 8, pp. 201-207.
14. Tan, P.-N., Steinbach, M. and  Kumar, V. (2000), Introduction to Data Mining, Addison-Wesley, NY. 
15. Ramalhete, P.S., Senos, A.M.R. and Aguiar, C. (2010), “Digital Tools for Material Selection in Product Design”, Materials and Design, Vol. 31, pp. 2275-2287.
16. Deng, Y.-M. and  Edwards, K.L. (2007), “The role of Materials Identification and Selection in Engineering Design”,  Ibid., Vol. 28, pp. 131-139.
17. Nong Zhi-sheng, Zhu Jing-chuan, Yu Hai-ling and  Lai Zhong-hong (2012), “First Principles Calculation of Intermetallic Compounds in Fe Ti Co Ni V Cr Mn Cu Al System High Entropy Alloy”,  Transactions of Nonferrous Metals Society of China, Vol. 22, Issue 6, pp. 1437-1444.
18. Shaoqing Wang  and  Hengqiang, Ye.  (2011), “First-Principles Studies on the Component Dependences of High-Entropy Alloys”, Advanced Materials Research,  Vol. 338, pp. 380-383.
19. Akai, H., Ogura, M. and  Long, N.H. (2009), “Computational Materials Design and its Application to Spintronics”, Japan—Germany Joint Workshop, Kyoto, Jan. 21-23, 2009,  available at: http:// www.jst.go.jp/sicp/ws2009_ge3rd/ presentation/29.pdf
20. Sydorenko, S.I., Zamulko, S.O., Voloshko, S.M. and  Konorev, S.I.(2012), AS No 45279 Ukraine ”The algorithm of computer design of new materials”, publication date August  22, 2012. Bulletin no. 27.

Full text: PDF (in Russian)

Admissibility of Approximate Solution of the Infinite Antagonistic Game on Unit Hypercube at Specific Sampling in Each of Its Dimensions

ROMANYUK V.V.

ABSTRACT

A three-stage method is presented for obtaining the approximate solution of the infinite antagonistic game on unit hypercube with specified uniform sampling of the game kernel along each of the cube dimensions. After the sampling in accordance with the suggested requirements is accomplished, mutually invertible reshaping of the game multidimensional matrix into the two-dimensional matrix is implemented, whereupon the approximate solution results. Admissibility of this solution is estimated over the consistency of the players’ optimal strategies supports, where its variation is restricted within minimal neighborhood of the sampling steps.

KEYWORDS

infinite zero-sum game, the unit hypercube, multidimensional matrix, the spectrum of the optimal strategy, the consistency of the approximate solution.

REFERENCES

1. Mushik, E. and Myuller, P. (1990), Metody prinyatiya tekhnicheskikh resheniy: Per. s nemetskogo [Methods of making technical decisions: Trans. from German], Mir, Moscow, Russia.
2.
Voloshyn, O.F. and  Mashchenko, S.O. (2010), Modeli ta metody pryynyattya rishen: navchalnyy posibnyk  [Models and methods of decision-making: a tutorial], VPTs «Kyyivskyy universytet», Kiev, Ukraine.
3. Vorobyev. N.N. (1985), Teoriya igr dlya ekonomistov-kibernetikov [Game theory for economists and  computer  scientists], Nauka, Moscow, Russia.
4.
Ouen, G. (2004), Teoriya igr. Per. s angl. Izd. 2-e.  [Game theory. Trans. from English. Ed. 2nd.], Editorial URSS, Moscow, Russia.
5. Belenky, A.S. (1994), “A 3-person Game on Polyhedral Sets”, Computers & Mathematics with Applications,  Vol. 28, Iss. 5, pp. 53-56.
6.
Yanovskaya, E.B. (1967), “About antagonistic games, played on functional spaces”, Litovskiy matematicheskiy sbornik, no. 3, pp. 547-557.
7.
Romanyuk, V.V.  (2011), “Regular designer optimal strategy in the model of action of  normalized load unit at the N-column constructions-resistance”, Problemy trybolohiyi, no.  2, pp. 111-114.
8.
Romanyuk, V.V. (2011), “Generalized model of partial removal of uncertainties such as probabilistic continuum antagonistic game on (2N 2) -dimensional parallelepiped with minimizing the maximum imbalance”,Visnyk Khmelnytskogo natsionalnogo universytetu. Tekhnichni nauky, no.  3, pp. 45-60.
9. Romanuke, V.V. (2011), “Coming up at the Left Off-bound Projector Optimal Strategy in Support Construction with Four Props under Unit-normed Uncertain Squeezes”,
Zbirnyk naukovykh prats In-tu problem modelyuvannya v energetytsi im. Pukhova, G.E. NAN  Ukrayiny , Vol. 60, pp. 76-82.
10. Romanuke, V.V.(2012),  “Optimal Strategies Continuum for Projecting the Four-mount Construction under Interval Uncertainties with Incorrectly Pre-evaluated Two Left and One Right Endpoints”, Radioelektronika, informatyka, upravlinnya, no. 1, pp. 92-96.
11. Yanovskaya, E.B.  (1964), “Minimax  theorems  for games on the unit square”,  Teoriya veroyatnostey i ee primeneniya, Vol.  9, no. 3, pp. 554-555.
12. Petrosyan, L.A., Zenkevich, N.A. and  Semina, E.A. (1998), Teoriya igr: uchebnoye posobiye dlya universitetov  [Game Theory: textbook for universities], Vysshaya shkola, Moscow, Russia.
13. Vorobiev, N.N. (1984), Osnovy teorii igr. Beskoalitsionnye igry [Fundamentals of the theory of games. Noncooperative games], Nauka, Moscow, Russia.
14. Romanuke, V.V. (2008), “Method of Practicing the Optimal Mixed Strategy with Innumerable Set in its Spectrum by Unknown Number of Plays”, Measuring and Computing Devices in Technological Processes, no.  2, pp. 196-203.
15. Ushakov, V.N. and Khripunov, A.P. (1997), “Approximate Construction of Solutions in Game-theoretic Control Problems”, J. of Applied Mathematics and Mechanics, Vol. 61, Iss. 3, pp. 401- 408. 

Full text: PDF (in Russian)