BULATOV M.V.
ABSTRACT
The article deals with a system of Volterra integral equations with a singular matrix before the principal part. The fundamental differences of such systems from integral equations of the first and the second kinds have been established. The conditions of existence of unique continuous solution have been defined.
KEYWORDS
Volterra integral equations, index, matrix polynomials, integral-algebraic equations.
REFERENCES
1. Apartsyn, A.S. (1999), Neklassicheskie uravneniya Volterry I roda: teoriya i chislennye metody [Nonclassical Volterra equations of the first kind: theory and numerical methods], Nauka, Novosibirsk, Russia.
2. Verlan, A.F. and Sizikov, V.S. (1986), Integralnye uravneniya: metody, algoritmy, programmy [Integral equation methods, algorithms, programs], Naukova dumka, Kiev, Ukraine.
3. Krasnov, M.L. (1975), Integralnye uravneniya [Integral equations], Nauka, Moscow, Russia.
4. Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1987), Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order, and some their applications], Nauka i tekhnika, Minsk, Belorussia.
5. Brunner, H. (2004), Collocation Methods for Volterra Integral and Related Funktional Differential Equations, Cambridge University Press.
6. Brunner, H. and van der Houwen, P.J. (1986), The Numerical Solution of Volterra Equations. CWI Monographs 3, North-Holland, Amsterdam.
7. Linz, P. (1985), Analytical and Numerical Methods for Volterra Equations, Studies in Applied Mathematics, Philadelphia.
8. Brunner, H. (1997), “1896—1996: One Hundred Years of Volterra Integral Equations of the First Kind”, Applied Numerical Mathematics, Vol. 24, pp. 83-93.
9. Chistyakov, V.F. (1987), “Singular systems of ordinary differential equations and their integrated counterparts”, Funktsii Lyapunova i ikh primeneniya, Novosibirsk,pp. 231-239.
10. Bulatov, M.V. and Budnikova, O.S. (2013), “Research multi-step methods for the solution of integral-algebraic equations: the construction of the stability regions”, Zhurn. vychislitelnoy matematiki i matematicheskoy fiziki, Vol. 53, no. 9, pp. 1448-1459.
11. Bulatov, M.V. (2002), Regularization of singular systems of integral equations”, Ibid., Vol. 42, no. 3, pp. 58-63.
12. Chistyakov, V.F. (2006), “On some properties of Volterra integral equations of the 4th kind with kernel of convolution type”, Matematicheskie zametki, Vol. 80 (1), pp. 115-118.
13. Hadizadeh, M., Ghoreishi, F. and Pishbin, S. (2011), “Jacobi Spectral Solution for Integral Algebraic Equations of Index-2”, Applied Numerical Mathematics, Vol. 161 (1), pp. 131-148.
14. Boyarintsev, Yu.E. (1980), Regulyarnye i singulyarnye sistemy obyknovennykh differentsialnykh uravneniy [Regular and singular system of ordinary differential equations], Nauka, Novosibirsk, Russia.
15. Gantmakher, F.R. (1966), Teoriya matrits [Matrix theory], Nauka, Moscow, Russia.
16.Vaarman, O. (1988), Obobshchennye obratnye otobrazheniya [Generalized inverse display], Valgus, Tallinn.
17. Ten, Men Yan (1985), “An approximate solution of linear integral Volterra equations of the first kind”, Abstract of Cand. Sci. (Phys.-Math.) dissertation, Irkutsk.
18. Bulatov, M.V. and Chistyakov, V.F. (1997), “The properties of differential-algebraic systems and their integral analogs”, Preprint, Memorial University of Newfoundland, p. 35.
19. Apartsyn, A.S (1987), “Digitization methods of regularization of some integral equations of the first kind”, Sbornik trudov «Metody chislennogo analiza i optimizatsii» [Methods of numerical analysis and optimization], Nauka, pp. 263-297.
Full text: PDF (in Russian)