USING OF THE GENERALIZED SUMMATION METHODS AT APPROXIMATION OF PROBABILITY DENSITY FUNCTION

A.I. Krasil’nikov, V.S. Beregun

ABSTRACT

Possibility of application of the generalized summation methods at approximation of probability density function by means of orthogonal representations is investigated in the article. Numerical results of research of approximation accuracy for typical distributions of random variables are given.

KEYWORDS

probability density function, approximation, orthogonal polynomial, orthogonal representation, generalized summation.

REFERENCES

1. Shelukhin, O.I. (1998), Negaussovskie protsessy v radiotekhnike [Non-Gaussian Processes in Radio Engineering], Radio i sviaz, Moscow, Russia.
2. Novitskii, P.V. and Zograf, I.A. (1991), Otsenka pogreshnostei rezultatov izmerenii [Observational Errors Estimator], Energoatomizdat, St. Petersburg, Russia.
3. Dech, R. (1965), Nelineinye preobrazovaniia sluchainykh protsessov [Nonlinear Trasformations of Random Processes], Translated by Smirenin, B.A., Sov. radio, Moscow, Russia.
4. Kunchenko, Yu.P. (2001), Polinomialnye otsenki parametrov blizkikh k gaussovskim sluchainyh velichin. Ch.I. Stokhasticheskie polinomy, ikh svoistva i primenenie dlia nakhozhdeniia otsenok parametrov [Parameter Polynomial Estimators of Random Variables Close to Gaussian. Part I. Stochastic Polynomials, Their Properties and Application for Finding the Parameter Estimators], ChITI, Cherkassy, Ukraine.
5. Kramer, G. (1975), Matematicheskie metody statistiki [Mathematical Methods of Statistics], Translated by Monin, A.S. and Petrov, A.A., Mir, Moscow, Russia.
6. Kendall, M. and Stiuart, A. (1966), Teoriia raspredelenii [Distribution Theory], Translated by Sazonov, V.V. and Shiriaev, A.N., Nauka, Moscow, Russia.
7. Devroi, L. and Derfi, L. (1988), Neparametricheskoe otsenivanie plotnosti. L1-podkhod [Nonparametric Density Estimation. The L1 View], Translated by Tsybakov, A.B., Mir, Moscow, Russia.
8. Krasyl’nikov, O.I. and Beregun, V.S. (2010), “Ordering of Orthogonal Representations of Probability Density Functions of Stochastic Processes”, Elektronika ta systemy upravlinnia, no. 3 (25), pp. 28-35.
9. Suetin, P.K. (2005), Klassicheskie ortogonalnye polinomy [Classical Orthogonal Polynomials], FIZMATLIT, Moscow, Russia.
10. Senatov, V.V. (2009), Tsentralnaia predelnaia teorema: Tochnost approksimatsii i asimptoticheskie razlozheniia [Central Limit Theorem: Approximation Accuracy and Asymptotic Decompositions], Knizhnyi dom “LIBROKOM”, Moscow, Russia.
11. Natanson, I.P. (1949), Konstruktivnaia teoriia funktsii [Constructive Theory of Functions], Gos. izd-vo tekh.-teor. lit., Moscow, Russia.
12. Fikhtengolts, G.M. (2003), Kurs differentsialnogo i integralnogo ischisleniia: V 3-h tomakh. T. III [Course of Differential and Integral Calculus: In 3 volumes. Vol. III], FIZMATLIT, Moscow, Russia.
13. Dziadyk, V.K. (1977), Vvedenie v teoriiu ravnomernogo priblizheniia funktsii polinomami [Introduction in the Theory of Uniform Approach of Functions by Polynomials], Nauka, Moscow, Russia.
14. Vadzinskii, R.N. (2001), Spravochnik po veroiatnostnym raspredeleniiam [Directory on Probabilistic Distributions], Nauka, St. Petersburg, Russia.

Full text: PDF (in Russian)