TECHNOLOGY OF PARALLEL PROCESSING OF SPATIALLY DISTRIBUTED DATA FOR RUNOFF MODEL OF RIVER WATERSHED

A.V. Boyko, M.I. Zheleznyak

ABSTRACT

The growing computer powers and development of information technologies permit using the multi-processor systems for computation of a broad class of hydrologic problems. A method was offered for parallel solution of equations of distributed river runoff model based on the theory of binary trees. The watershed was presented in a form of a binary tree which nodes are independent sub-watersheds, that allows performing calculations computations using multiprocessor systems. The efficiency of the parallel model has been analyzed by computation of flood runoff of the Uzh
river watershed.

KEYWORDS

flood modeling, distributed runoff models, parallel computation, information technology.

REFERENCES

1. Singh V.P. Computer Models of Watershed Hydrology. — Water Resources Publications, 1995.— 1130 p.
2. Beven K. Topmodel. // Computer Models of Watershed Hydrology. — Water Resources Publications, 1995.— P. 627—668.
3. Liu Z., Todini E. The TOPKAPI model // Hydrology and Earth System Sciences.—2002.—No 6. — P. 859—881.
4. Boyko O., Zheleznyak M. Assessment of flood mitigation measurements for Transcarpathian small watersheds based on distributed rainfall-runoff model // Mathematical Machines and Systems. — 2011.— No 4. — P. 149—160 (in Ukrainian).
5. Boyko O. Technology of GIS processing of spatially distributed data for runoff model of river watershed. — Ibid. — 2012. — No 1. — P. 36—44 (in Ukrainian).
6. Voevodin V.V., Voevodin Vl.V Parallel Computing. — St.-Petersburg: BHV Petersburg, 2002.— 608 p. (in Russian).
7. Paglieri L. et al. Parallel computation for shallow water flow: a domain decomposition approach / // Parallel Computing.— 1997. — No 23. — P. 1261—1277.
8. Hao Wang et al. A common parallel computing framework for modeling hydrological processes of riverbasins // Ibid. — 2011. — No 37. — P. 302—315.
9. Gropp W., Lusk E., Skjellum A. Using MPI: portable parallel programming with the message-passing interface. — Cambridge, MA, USA: MIT Press Scientific and Engineering Computation Series. — 1999.— 350 p.
10. Vischel T. et al. Comparison of soil moisture fields estimated by catchment modelling and remote sensing: a case study in South Africa // Hydrology and Earth System Sciences. — 2008.— No 12. — P. 751—767.
11. Liu Z., Martina M.L.V., Todini E. Flood forecasting using a fully distributed model: application of the TOPKAPI model to the Upper Xixian Catchment.—Ibid.—2005.—No 9.— P. 347—364.
12. Cunge J.A., Holly F.M., Verwey A. Practical Aspects of Computational River Hydraulics.—London: Pitman, 1980.— 256 p. (in Russian).
13. Beven K. Kinematic subsurface stormflow //Water Resources Research.—1981.—No 17.—P. 1419—1424.
14. Brooks R.H., Corey A.T. Hydraulic properties of porous media // Hydrologic Papers (Colorado State University, Ft. Collins). — 1964. — No 3. — 27 p.
15. Vieux B.E. Distributed Hydrologic Modeling Using GIS // Series: Water Science and Technology Library. — 2004.— Vol. 48, 2nd ed. — 289 p.
16. Fehlberg E. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems // National Aeronautics and Space Administration. — 1969.— Technical Report 315.— 27 p.
17. Drozdek A. Data Structures and algorithms in C++.—Brook and Cole. Pacific Grove, CA, 2001.— 511 p.
18. McConnell J. J. Analysis of Algorithms. — Jones and Bartlett Learning, 2008.
19. http:// srtm.csi.cgiar.org
20. http://aws.amazon.com/ru/ec2/
21. Martynov E., Zinovjev G., Svistunov S. Academic segment of Ukrainian Grid infrastructure // System Research and Information Technologies.—2009. — No 3. — P. 31—42.

Full text: PDF (in Russian)