Electronic modeling

Vol 46, No 6 (2024)

CONTENTS

Mathematical modeling and Computation Methods

 
3-7

Informational Technologics

 

Rogoza W.S., Ishchenko G.V.
Direct and Inverse Problems of Information Retrieval of Text  Documents 


8-28
 
29-42
  Gerasimov V.R., Dusheba V.V.
Analysis of Optimizing Database Performance Methods

43-54

Application of Modeling Methods and Facilities

 

Vladimirsky A.A., Vladimirsky I.A.
Correlation parametric method for determining the velocity of acoustic wave propagation in a pipeline


55-63
 

Vasiliev O.V., Vasiliev V.V., Choch V.V., Hilgurt S.Ya.
Implementation of Non-integer Technical Systems Using Programmable Logic


64-71 
 

Khydyntsev M.M.,  Zubok V.Yu.,
Palazhchenko I.L. Approaches to the Analysis of Sets of Cyber Statistics Indicators


72-96 
 

Dolynenko V.V., Shapovalov E.V.
Synthesis and Mathematical Modeling of a Compo- site Heat Source Model Related to the Mig/Mag Welding Process with Torch Oscillations


97-108 
  Zubok V.,  Dubynskyi G.
Assessing and Improving the Cybersecurity of the Topology of Critical Information Infrastructure Objects in Global Cyberspace

109-119 

On the connectivity of quasi-random graphs

O.D. Glukhov, candidate physics and mathematics of science
National Aviation University of Ukraine
Ukraine, 03058, Kyiv, Lubomyra Huzara Avenue, 1
tel. 0677348008, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Èlektron. model. 2024, 46(6):03-07

https://doi.org/10.15407/emodel.46.06.003

ABSTRACT

Graph theory is widely used to study the structural properties of complex discrete systems. Thus, to assess the ability of a system to maintain certain structural properties when the connections between its elements are broken, it is important to study different types of graph connectivity. Quasi-random graphs are a model of complex discrete systems with random disruptions of connections between system elements. The problem of estimating the probability of connectivity in quasi-random graphs is considered. The concepts of multiframe and polynomial of a connected graph are introduced. A new estimator of connectivity for quasi-random graphs based on a 3-edge connected graphs is presented.

KEYWORDS

complex discrete system, quasi-random graph, graph multiframe, connected graph polynomial.

REFERENCES

  1. Frieze A, Karoński M. Introduction to Random Graphs. Cambridge University Press; 2024. P. 576.
  2. Karoński M., Frieze A. Random Graphs and Networks: A First Course. Cambridge University Press, 2023. 220 p.
    https://doi.org/10.1017/9781009260268
  3. Glukhov, O., Korostil, Ju. (2004), Strukturna bezpeka skladnyh dyskretnyh system pry vypadkovyh vidmovah [Structural safety of complex discrete systems with random failu­res], Modelirovanie ta informaziyni tehnologii, IPME NANU, v. 27, Kyiv, p. 91-95.
  4. Glukhov A.D. Kvazisluchaynie grafy I strukturnaya ustoychivost slozhnyh diskretnyh system// Elektronnoe modelirovanie, v. 38, № 5, 2016, с. 35-41.
    https://doi.org/10.15407/emodel.38.05.035
  5. Glukhov O.D. Teorema pro vypadkovi perestanovky ta deyaki yii zastosuvannya// Elektronnoe modelirovanie, v. 43, № 2, 2021, с. 29-36.
    https://doi.org/10.15407/emodel.43.02.029
  6. Diestel R. Graph Theory, Springer-Verlag, Heidelberg, Graduate Texts in Mathematics, v. 173, 2017. 428 p.
    https://doi.org/10.1007/978-3-662-53622-3_7

Full text: PDF

 

DIRECT AND INVERSE PROBLEMS OF INFORMATION RETRIEVAL OF TEXT DOCUMENTS

W.S. Rogoza, G.V. Ishchenko

Èlektron. model. 2024, 46(6):08-28

https://doi.org/10.15407/emodel.46.06.008

ABSTRACT

Information retrieval on the Web, databases and other sources of text documents includes tasks that require analyzing the relationships between documents and the constituent elements of documents. Establishing such relations allows search engine users to retrieve the documents they need from endless sources of information using concise search request, as well as to choose effective methods of processing found documents to solve various tasks of analyzing the content of documents. A classification of methods for processing text documents using forward and reverse indices is proposed, which allows generalizing the properties of document search and processing methods.

Elementary examples of application of the methods are given, which allow the reader to enter the essence of the issues quickly, discussed in the article, and tounderstand better the principles of construction of these methods and their suitability for solving specific information retrieval tasks.

KEYWORDS

information retrieval, text documents, models of direct and reverse document indexing.

REFERENCES

  1. Bard, G. (2007). Spelling-error tolerant, order-independent pass-phrases via the Damerau–Levenshtein string-edit distance metric. УProceedings of the fifth australasian symposium on ACSW frontiers (с. 117-124). Australian Computer Society.
  2. Levandowsky, M., & Winter, D. (1971). Distance between sets. Nature, 234(5), 34-35.
    https://doi.org/10.1038/234034a0
  3. Min, C., Shiwen, M., Yin, Z., Victor, C., & Leung, M. (2014). Big Data. Related Techno­logies, Challenges, and Future Prospects. Springer.
  4. Amer-Yahia, S., &Lalmas, M. (2006). XML search: Languages, INEX and scoring. SIGMOD Record, 35(4), 16-23.
    https://doi.org/10.1145/1228268.1228271
  5. Zhang, Z., Gentile, A.L., &Ciravegna, F. (2013). Recent advances in methods of lexical semantic relatedness — a survey. Natural Language Engineering, 19(4), 411-479.
    https://doi.org/10.1017/S1351324912000125
  6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P.F. (Ред.). (2003). The description logic handbook. Cambridge University Press, 2003. 574 p.
  7. Goczyła, K. (2011). Ontologie w systemach informatycznych. Akademicka Oficyna Wydawnicza EXIT.
  8. Martin, P. (б. д.). Translations between RDF+OWL, N3, KIF, UML, FL, FCG and FE. URL: http://www.webkb.org/doc/model/comparisons.html (date of access: 20.09.2024).
  9. Leskovec, J., Rajaraman, A., & Ullman, J. (2014). Mining of massive datasets. Cambridge University Press.
    https://doi.org/10.1017/CBO9781139924801
  10. Mander, U. (1994). Finding similar files in a large file systems. У USENIX confe­rence (с. 1-10).
  11. Павел. (б.д.). Триллион маленьких шинглов. Хабр. URL: https://habr.com/ru/companies/antiplagiat/articles/445952
  12. Andoni, A., &Indyk, P. (2008). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. ACM, 51(1), 117-122.
    https://doi.org/10.1145/1327452.1327494
  13. Broder, A.Z., Charikar, M., Frieze, A.M., & Mitzenmacher, M. (1998). Min-wise independent permutations. The thirtieth annual ACM symposium on theory of computing (с. 327-336). Dallas, Texas, USA, 24-26 May.
    https://doi.org/10.1145/276698.276781
  14. Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons Ltd.
  15. Hensinger, M. (2006). Finding near-duplicate web pages: A large-scale evaluation of algorithms. У 29th SIGIR conf. (с. 284-291).
    https://doi.org/10.1145/1148170.1148222
  16. Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via hashing. У int. conf. on very large databases (с. 518-529).
  17. Deans, J., &Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clusters. ACM, 51(1), 107-113.
    https://doi.org/10.1145/1327452.1327492
  18. Manning, C.D., Ragnavan, P., &Schütze, H. (2008). Introduction to informal retrieval. Cambridge University Press.
    https://doi.org/10.1017/CBO9780511809071
  19. Havelivala, T.H. (2002). Topic-sensitive PageRank. У 11th int. world-wide-web conference (с. 517-526).
    https://doi.org/10.1145/511446.511513
  20. Gyöngi, Z., Garcia-Molina, H., & Pedersen, J. (2004). Combating link spam with trust-rank. УProc. 30th intl. conf. on very large databases (с. 576-587).
    https://doi.org/10.1016/B978-012088469-8.50052-8

Full text: PDF

 

APPLICATION OF ARTIFICIAL INTELLIGENCE FOR SWARM SYSTEMS MANAGMENT

O.A. Kravchuk, V.D. Samoilov

Èlektron. model. 2024, 46(6):29-42

https://doi.org/10.15407/emodel.46.06.029

ABSTRACT

The use of artificial intelligence methods in swarm systems of unmanned aerial vehicles is studied. The basic artificial intelligence (AI) algorithms that ensure adaptive and intelligent swarm behavior are presented, and their application in real-world scenarios is analyzed. Particular attention is paid to the current problems and limitations of swarm systems, such as system scalability, communication reliability, adaptation to a dynamic environment, etc. Promising directions for the development of AI-based algorithms aimed at increasing the efficiency, stability, and survivability of swarms are outlined.

KEYWORDS

unmanned aerial vehicles, swarm system, swarm of unmanned aerial vehicles, artificial intelligence.

REFERENCES

  1. Beni,, Wang, J. (1993). Swarm intelligence in cellular robotic systems. In robots and biological systems: Towards a new bionics? Pp. 703-712. Springer Berlin Heidelberg.
    https://doi.org/10.1007/978-3-642-58069-7_38
  2. Liu, G., Van Huynh, N., Du, H. et al. Generative AI for unmanned vehicle swarms: challenges, applications and opportunities. arXiv, 2024. URL: http://arxiv.org/abs/2402.18062
  3. Tan, Y., Wang, J., Liu, J. Unmanned systems security: Models, challenges, and future directions. IEEE Network. Vol. 34, Issue 4. Pp. 291- 
    https://doi.org/10.1109/MNET.001.1900546
  4. McEnroe, P., Wang, S., Liyanage, M. (2022). A survey on the convergence of edge computing and AI for uavs: opportunities and challenges. IEEE internet of things journal. Pp. 15435-15459. 
    https://doi.org/10.1109/JIOT.2022.3176400
  5. Ahmadzadeh, A., Jadbabaie, A., Kumar, V. et al. (2006). Multi-UAV cooperative surveillance with spatio-temporal specifications. Proceedings of the 45th IEEE conference on decision and control, San Diego, CA, USA, 13-15 December 2006. Pp. 5293- 
    https://doi.org/10.1109/CDC.2006.377157
  6. Nigam, N., Bieniawski, S., Kroo, I. et al. (2012). Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE transactions on control systems technology. Vol. 20, no. 5. Pp. 1236- 
    https://doi.org/10.1109/TCST.2011.2167331
  7. Scherer, J., Rinner, B. (2020). Multi-UAV surveillance with minimum information idleness and latency constraints. IEEE robotics and automation letters. Vol. 5, no. 3. Pp. 4812- 
    https://doi.org/10.1109/LRA.2020.3003884
  8. Yan, R., Pang, S., Sun, H. et al. (2010). Development and missions of unmanned surface vehicle. Journal of marine science and application. Vol. 9, no. 4. Pp. 451-
    https://doi.org/10.1007/s11804-010-1033-2
  9. Masoud, A.A. Decentralized, self-organizing, potential field-based control for individually motivated, mobile agents in a cluttered environment: a vector-harmonic potential field approach. IEEE transactions on systems, man, and cybernetics - part A: systems and humans. Vol. 37, no. 3. Pp. 372-
    https://doi.org/10.1109/TSMCA.2007.893483
  10. Hu, Y., Chen, M., Saad, W. et al. (2021). Distributed multi-agent meta learning for trajectory design in wireless drone networks. IEEE journal on selected areas in communications. Vol. 39, no. 10. Pp. 3177- 
    https://doi.org/10.1109/JSAC.2021.3088689
  11. Ding, Y., Yang, Z., Pham, Q.-V. et al. (2023). Distributed machine learning for UAV swarms: computing, sensing, and semantics. arXiv, URL: http://arxiv.org/abs/2301.00912
  12. Konečný, J., McMahan, H.B., Yu, F. X. et al. Federated learning: strategies for improving communication efficiency. arXiv, 2017. URL: http://arxiv.org/abs/1610.05492
  13. Konečný, J., McMahan, H.B., Ramage, D. et al. Federated optimization: distributed machine learning for on-device intelligence. arXiv, 2016. URL: http://arxiv.org/abs/1610.02527
  14. Yang, Q., Liu, Y., Chen, T. et al. Federated machine learning: concept and applications. Todayʼs AI still faces two major challenges. arXiv, 2019. URL: http://arxiv.org/abs/1902. 04885
  15. Niknam, S., Dhillon, H.S., Reed, J.H. Federated learning for wireless communications: motivation, opportunities and challenges. arXiv, 2020. URL: http://arxiv.org/abs/1908.06847
  16. Yang, Z., Chen, M., Wong, K.-K. et al. (2022). Federated learning for 6G: applications, challenges, and opportunities. Engineering. Vol. 8. P. 33- 
    https://doi.org/10.1016/j.eng.2021.12.002
  17. Federated learning: challenges, methods, and future directions / T. Li et al. IEEE signal processing magazine. 2020. Vol. 37, no. 3. Pp. 50- 
    https://doi.org/10.1109/MSP.2020.2975749
  18. Fallah, A., Mokhtari, A., Ozdaglar, A. (2020). Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. Advances in neural information processing systems (2020). Curran Associates, Inc., Pp. 3557- URL: https://proceedings.neurips.cc/paper_files/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
  19. Distributed learning in wireless networks: recent progress and future challenges / M. Chen et al. IEEE journal on selected areas in communications. 2021. Vol. 39, no. 12. Pр. 3579- 
    https://doi.org/10.1109/JSAC.2021.3118346
  20. Teerapittayanon, S., McDanel, B., Kung, H.T. (2017). Distributed deep neural networks over the cloud, the edge and end devices. 2017 IEEE 37th international conference on distributed computing systems (ICDCS), Atlanta, GA, USA, 5-8 June 2017.
    https://doi.org/10.1109/ICDCS.2017.226
  21. Gupta, O., Raskar, R. (2018). Distributed learning of deep neural network over multiple agents. Journal of network and computer applications. Vol. 116. Pp. 1- 
    https://doi.org/10.1016/j.jnca.2018.05.003
  22. Singh, A., Vepakomma, P., Gupta, O. et al. (2019). Detailed comparison of communication efficiency of split learning and federated learning. arXiv, URL: http://arxiv.org/abs/1909.09145
  23. Liu, X., Deng, Y., Mahmoodi, T. (2022). A novel hybrid split and federated learning architecture in wireless UAV networks. ICC 2022 — IEEE international conference on communications, Seoul, Korea, Republic of, 16-20 May 2022. 
    https://doi.org/10.1109/ICC45855.2022.9838867
  24. Byrne, M. (2023). The disruptive impacts of next generation generative artificial intelligence. CIN: computers, informatics, nursing. Vol. 41, no. 7. Pp. 479- 
    https://doi.org/10.1097/CIN.0000000000001044
  25. Research on unmanned surface vehicles environment perception based on the fusion of vision and lidar / W. Zhang et al. IEEE access. 2021. Vol. 9. Pp. 63107- 
    https://doi.org/10.1109/ACCESS.2021.3057863
  26. Zhang,, Fu, M. (2023). Research on unmanned system environment perception system methodology. Lecture notes in networks and systems. Cham, Pp. 219-233. 
    https://doi.org/10.1007/978-3-031-38082-2_17
  27. A latent encoder coupled generative adversarial network (LE-GAN) for efficient hyperspectral image super-resolution / Y. Shi et al. IEEE transactions on geoscience and remote sensing. 2022. P. 1. 
    https://doi.org/10.1109/TGRS.2022.3193441
  28. Co-Visual pattern-augmented generative transformer learning for automobile geo-localization / J. Zhao et al. Remote sensing. 2023. Vol. 15, no. 9. P. 2221.
    https://doi.org/10.3390/rs15092221
  29. Ponnimbaduge Perera, T.D., Jayakody, D.N.K., Sharma, S.K. et al. Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE communications surveys & tutorials. Vol. 20, no 1. Pp. 264- 
    https://doi.org/10.1109/COMST.2017.2783901
  30. Wen, W., Jia, Y., Xia, W. Federated learning in swipt-enabled micro-uav swarm networks: a joint design of scheduling and resource allocation. 2021 13th international conference on wireless communications and signal processing (WCSP), Changsha, China, 20-22 October 2021. 2021. 
    https://doi.org/10.1109/WCSP52459.2021.9613446
  31. Pan, S.J., Yang, Q. (2010). A survey on transfer learning. IEEE transactions on knowledge and data engineering. Vol. 22, no. 10. Pp. 1345- 
    https://doi.org/10.1109/TKDE.2009.191
  32. Hospedales, T., Antoniou, A., Micaelli, P. et al. Meta-Learning in Neural Networks: A Survey. arXiv, 2020. 
    https://doi.org/10.1109/TPAMI.2021.3079209

Full text: PDF

 

ANALYSIS OF OPTIMIZING DATABASE PERFORMANCE METHODS

V.V. Dusheba, V.R. Gerasimov

Èlektron. model. 2024, 46(6):43-54

https://doi.org/10.15407/emodel.46.06.043

ABSTRACT

An in-depth analysis of modern database optimization methods to improve their performance, reliability, and scalability is carried out. The main attention is paid to relational (Oracle, MySQL, PostgreSQL) and NoSQL databases (MongoDB, Redis, Cassandra), which are widely used for data management. Key approaches to optimization are discussed, including designing efficient database schemas, normalization and denormalization, use of indexes, caching, sharding, and replication. Particular attention is paid to the importance of choosing the right database management system according to the type of information and specifics of queries, which significantly affects performance. Methods of optimizing SQL queries and client applications to reduce server load are analyzed. The balance between data integrity and data access speed is analyzed, which is critical for modern database management systems.

KEYWORDS

database optimization, normalization, denormalization, sharding, replication.

REFERENCES

  1. DB-Engines Ranking. URL: https://db-engines.com/en/ranking (date of access: 02.09.2024).
  2. Alotaibi O., Pardede E. Transformation of Schema from Relational Database (RDB) to NoSQL Databases // Data. 2019. Vol. 4, no. 4.
    https://doi.org/10.3390/data4040148
  3. Dash D., Polyzotis N., Ailamaki A. CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large Workloads // Proc. VLDB Endow. 2011. Vol. 4, no. 6. Pp. 362-
    https://doi.org/10.14778/1978665.1978668
  4. Kaizen: A Semi-Automatic IndexAdvisor / I. Jimenez, H. Sanchez, Q.T. Tran, N. Polyzotis // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. SIGMOD ʼ12. 2012. Pp. 685-688.
  5. Ankur S., Felix M. S., Jens D. The Case for Automatic Database Administration using Deep Reinforcement Learning. URL: https://www.researchgate.net/publication/322568144_ The_Case_for_Automatic_Database_Administration_using_Deep_Reinforcement_Learning (date of access: 18.11.2024).
  6. Chopade R., Pachghare V. MongoDB Indexing for Performance Improvement // ICT Systems and Sustainability. Advances in Intelligent Systems and Computing / Ed. by M. Tuba, S. Akashe, A. Joshi. Singapore: Springer, 2020. Vol. 1077. Pp. 338-
    https://doi.org/10.1007/978-981-15-0936-0_56
  7. URL: https://github.com/Huawei-Hadoop/hindex. (dateofaccess:05.09.2024).
  8. Aldibaja I., Suleiman A. Improving GDFS Web Cache Algorithm Using Semantic Similarity Measures // International Journal of Computer Science Trends and Technology. 2017. Vol. 5. Pp. 6-
  9. Visual Evaluationof SQL Plan Cache Algorithms / J. Kossmann, M. Dreseler, T. Gasdaetal. // Databases Theory and Applications / Ed. by J. Wang, G. Cong, J. Chen, J. Qi. — Berkeley, CA.: Springer, Cham, 2018. Pp. 350-
    https://doi.org/10.1007/978-3-319-92013-9_31
  10. Michiardi P., Carra D., Migliorini S. Cache-Based Multi-Query Optimization for Data-Intensive Scalable Computing Frameworks // Information Systems Frontiers. 2021. Vol. 23. Pp. 35-51.
    https://doi.org/10.1007/s10796-020-09995-2

Full text: PDF