Electronic modeling

Vol 41, No 5 (2019)

 

CONTENTS

Mathematical Modeling and Computation Methods

  MARUSENKOVA T.A.
Simulation Models for Synthesizing Noise of Mems Gyroscopes


3-16
  SAFONYK A.P., TARGONIY I.M.
Modeling and Automation of the Process of the Obtaining aCoagulant for Clarification and Discoloration of Industrial Wastewater

17-34

Informational Technologics

  KRAVTSOV G.A., LEVITIN V.V., KOSHEL‘ V.I., NIKITCHENKO V.V., PRIMUSHKO A.N.
Strong Artificial Intelligence: Background Precondition


35-58
  ZUBOK V.YU.
Features of the Model of the Offender at the Analysis of Attacks on Global Internet Routing

59-70

Computational Processes and systems

  PILKEVICH I.A., BOYCHENKO O.S., HUMENIUK I.V.
Method for the Synthesis of Wireless Information and Communication Network Based on Multi-Criteria Clustering

71-84

Application of Modeling Methods and Facilities

  IATSYSHYN A.V., KUTSAN YU. G., ARTEMCHUK V.O., KAMENEVA I.P., POPOV O.O., KOVACH V.O.
Means of Intellectual Analysis and Visualization Geospatial Atmospheric Air Monitoring Data


85-102
  KONASHEVYCH O.I.
Data Insertion in Blockchain For Legal Purposes. How to Sign Contracts Using Blockchain

103-120

SIMULATION MODELS FOR SYNTHESIZING NOISE OF MEMS GYROSCOPES

T.A. Marusenkova

Èlektron. model. 2019, 41(5):03-16
https://doi.org/10.15407/emodel.41.05.003

ABSTRACT

The work presents a solution to a problem of developing software for modeling noise of MEMSThe work presents a solution to a problem of developing software for modeling noise of MEMSgyroscopes. Such software is of great importance due to complexity of the algorithms forminimization of pose estimation errors by compensation for the transfer function drift based ondigital filtering. We have proposed two algorithms for synthesizing noise terms typical of MEMSgyroscopes. The first of these algorithms is based on integrating pseudorandom harmonic signals.The second one assumes frequency correction of an array of pseudorandom signals. The spectralcharacteristics of synthesized noise are analyzed using the Allan variance. We use our ownsoftware, IMU tester, based on M5Stack with SoC ESP32, to study noise parameters. The obtainedresults are of key importance for simulation of MEMS gyroscopes errors using the Monte-Carlomethod, optimization of the correctingKalman-based filters and firmware of integrated IMUsensors.

KEYWORDS

MEMS gyroscope, noise, model of noise synthesis, inertial measurement unit.

REFERENCES

1. Höflinger, F., Müller, J., Zhang, R., Reindl, L. and Burgard, W. (2013), “Wireless micro inertial measurement unit (IMU)”, IEEE Transactions on Instrumentation and Measurement, Vol. 62, Iss. 9, pp. 2583-2595.
https://doi.org/10.1109/TIM.2013.2255977
2. Blasch, E., Kostek, P., Paces, P. and Kramer, K. (2015), “Summary of avionics technologies”, IEEE Aerospace and Electronic Systems Magazine, Vol. 30, Iss. 9, pp. 6-11.
https://doi.org/10.1109/MAES.2015.150012
3. Ahmed, H. and Tahir, M. (2017), “Accurate attitude estimation of a moving land vehicle using low-cost MEMS IMU sensors”, IEEE Transactions on Intelligent Transportation Systems, Vol. 18, Iss. 7, pp. 1723-1739.
https://doi.org/10.1109/TITS.2016.2627536
4. Buke, A., Gaoli, F., Yongcai, W., Lei, S. and Zhiqi, Y. (2015), “Healthcare algorithms by wearable inertial sensors: a survey”, China Communications, Vol. 12, Iss. 4, pp. 1-12.
https://doi.org/10.1109/CC.2015.7114054
5. Nemec, D., Janota, A., Hrubos, M. and Simak, V. (2016), “Intelligent real-time MEMS sensor fusion and calibration”, IEEE Sensors Journal, Vol. 16, Iss. 19, pp. 7150-7160.
https://doi.org/10.1109/JSEN.2016.2597292
6. Lima, P.U. (2007), “A Bayesian approach to sensor fusion in autonomous sensor and robot networks”, IEEE Instrumentation & Measurement Magazine, Vol. 10, Iss. 3, pp. 22-27.
https://doi.org/10.1109/MIM.2007.4284253
7. Holyaka, R. and Marusenkova, T. (2018), Split Hall Structures: Parametric Analysis and Data Processing, Lambert Academic Publishing, Norderstedt, Germany.
8. (2017), The five motion senses: using MEMS inertial sensing to transform application, Analog Devices.
9. Shin, B., Kim, C., Kim, J., Lee, S., Kee, C., Kim, H. and Lee, T. (2016), “Motion recognitionbased 3D pedestrian navigation system using smartphone”, IEEE Sensors Journal, Vol. 16, Iss. 8, pp. 6977-6989.
https://doi.org/10.1109/JSEN.2016.2585655
10. Zekavat, R. and Buehrer, M. (2019), Localization sensor error measures and analysis. Handbook of Position Location: Theory, Practice, and Advances, John Wiley & Sons.
11. Daroogheha, S., Lasky, T. and Ravani, B. (2018), “Position measurement under uncertainty using magnetic field sensing”, IEEE Transactions on Magnetics, Vol. 54, Iss.12, no. 4002908.
https://doi.org/10.1109/TMAG.2018.2873158
12. Li, Y., Georgy, J., Niu, X, Li, Q. and El-Sheimy, N. (2015), “Autonomous calibration of MEMS gyros in consumer portable devices”, IEEE Sensors Journal, Vol. 15, Iss. 7, pp. 4062-4072.
https://doi.org/10.1109/JSEN.2015.2410756
13. Latt, W., Tan, U., Riviere, C. and Ang, W. (2012), “Transfer function compensation in gyroscope-free inertial measurement units for accurate angular motion sensing”, IEEE Sensors Journal, Vol. 12, Iss. 5, pp. 1207-1208.
https://doi.org/10.1109/JSEN.2011.2165057
14. Huang, J. and Soong, B. (2019), “Cost-aware stochastic compressive data gathering for wireless sensor networks”, IEEE Transactions on Vehicular Technology, Vol. 68, pp. 1525-1533.
https://doi.org/10.1109/TVT.2018.2887091
15. Shmaliy, Y., Zhao, S. and Ahn, C. (2019), “Optimal and unbiased filtering with colored process noise using state differencing”, IEEE Signal Processing Letters, Vol. 26, Iss. 4, pp. 548-551.
https://doi.org/10.1109/LSP.2019.2898770
16. Lin, X., Jiao, Y. and Zhao, D. (2018), “An improved Gaussian filter for dynamic positioning ships with colored noises and random measurements loss”, IEEE Access, Vol. 6, pp. 6620-6629.
https://doi.org/10.1109/ACCESS.2018.2789336
17. Allan, D. and Levine, J. (2016), “A historical perspective on the development of the Allan variances and their strengths and weaknesses”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 63, Iss. 4, pp. 513-519.
https://doi.org/10.1109/TUFFC.2016.2524687
18. Guerrier, S., Molinari, R. and Stebler, Y. (2016), “Theoretical limitations of Allan variance-based regression for time series model estimation”, IEEE Signal Processing Letters, Vol. 23, Iss. 5, pp. 597-601.
https://doi.org/10.1109/LSP.2016.2541867
19. Shao, T., Duan, Z., Ge, Q. and Liu, H. (2019), “Recursive performance ranking of Kalman filter withmismatched noise covariances”, IET Control Theory&Applications, Vol. 13, Iss. 4, pp. 459-466.
https://doi.org/10.1049/iet-cta.2018.5064
20. Won, S., Melek, W. and Golnaraghi, F. (2010), “A Kalman particle filter based position and orientation estimation method using a position sensor/Inertial measurement unit hybrid system”, IEEE Transactions on Industrial Electronics, Vol. 57, Iss. 5, pp. 1787-1798.
https://doi.org/10.1109/TIE.2009.2032431
21. (2017), High Stability, Low Noise Vibration Rejecting Yaw Rate Gyroscope. Data Sheet ADXRS646, Analog Device, available at https://www.analog.com/media/en/technical-documentation/data-sheets/ADXRS646.pdf (accessed June 10 2019).
22. (2018), “M5Stack Documentation”, available at https://media.readthedocs.org/pdf/m5stack/master/m5stack.pdf (accessed April 13 2019).
23. (2014), “MICRO-CAP. Electronic Circuit Analysis Program. Spectrum Software”, available at http://www.spectrum-soft.com (accessed April 13 2019).

Full text: PDF

MODELING AND AUTOMATION OF THE PROCESS OF THE OBTAINING A COAGULANT FOR CLARIFICATION AND DISCOLORATION OF INDUSTRIAL WASTEWATER

A.P. Safonyk, I.M. Targoniy

Èlektron. model. 2019, 41(5):17-34
https://doi.org/10.15407/emodel.41.05.017

ABSTRACT

The model of the electrocoagulator, which describes the processes taking place in the electrolyzer,The model of the electrocoagulator, which describes the processes taking place in the electrolyzer,was developed. The solution of the corresponding model problem was found. The effect ofcurrent strength on the concentration of divalent iron, water temperature was investigated. The algorithmof the two-circuit regulation of pollution concentration in sewage with feedback bonds ofcurrent between the plates of the coagulator and the concentration of pollution in water arriving inthe automated system of purification is developed. A functional scheme of automation with 5contours of regulation and a selected set of technical means of automation of leading manufacturersof companies was constructed. An automated control system of wastewater treatment was developedwith the implementation of a coagulant prediction algorithm in relation to the input pollutionconcentration. It was implemented to control the current strength in the electrolyzer withminimal electricity consumption. Assumed management system with the ability to change the entireperformance settings in real time using SCADA - system WinCC Flexible.

KEYWORDS

simulation model, electrocoagulation, coagulant, automation, regulation,simulation model, electrocoagulation, coagulant, automation, regulation,SCADA.

REFERENCES

1. Bomba, A.Ya. and Safonik, A.P. (2018), “Mathematical simulation of the process of aerobic treatment of wastewater under conditions of diffusion and mass transfer perturbations”, Journal of Engineering Physics and Thermophysics, Vol. 91, no. 2, pp. 318-323.
https://doi.org/10.1007/s10891-018-1751-x
2. Bomba, A., Klymiuk, Yu. and Prysiazhniuk, I. (2016), “Mathematical modeling of wastewater treatment from multicomponent pollution by using microporous particles”, Proceeding of the AIP Conference, 2016, 1773, 040003, pp. 1-11.
https://doi.org/10.1063/1.4964966
3. Kaur, R., Arora, A., Kaur, A., Singh, N. and Sharma, S. (2018), “Treatment of waste water through electrocoagulation”, Pollution Research, Vol 37, Iss. 2, pp. 394-403.
4. Nayak, B. (2018), “A review of electrocoagulation process for wastewater treatment”, International Journal of ChemTech Research, Vol. 11, no. 3, pp. 289-320.
5. Smoczynski, L., Munska, K.T. and Kosobucka, M. (2014), “Destabilization of model wastewater in the chemical coagulation process”, Ecological Chemistry and Engineering, Vol. 21, no. 2, pp. 269-279.
https://doi.org/10.2478/eces-2014-0021
6. Tkachev, R. (2012), “Study of electrocoagulation installation of wastewater treatment as an object of automation”, Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy, no. 6(60), pp 48-51.
7. Khandegar, V., Acharya, S. and Jain, A.K. (2018), “Data on treatment of sewage wastewater by electrocoagulation using punched aluminum electrode and characterization of generated sludge” , Data in Brief, Vol. 18, pp. 1229-1238.
https://doi.org/10.1016/j.dib.2018.04.020
8. Safonyk, A., Bomba, A. and Tarhonii, I. (2019), “Modeling and automation of the electrocoagulation process in water treatment”, Advances in Intelligent Systems and Computing, Vol. 871, pp. 451-463.
https://doi.org/10.1007/978-3-030-01069-0_32

Full text: PDF

STRONG ARTIFICIAL INTELLIGENCE: BACKGROUND PRECONDITION

G.A. Kravtsov, V.V.Levitin,
V.I. Koshel‘, V.V. Nikitchenko, A.N. Primushko

Èlektron. model. 2019, 41(5):35-58
https://doi.org/10.15407/emodel.41.05.035

ABSTRACT

The article provides an overview of the fundamental foundations for building strong artificial intelligence.The article provides an overview of the fundamental foundations for building strong artificial intelligence.The validity of the hypotheses put proved by the method of field experiments isshown. It is argued that in order to construct a mathematical theory of strong artificial intelligence(AI) it is necessary to go over to the von Neumann-Bernays-Godel system of axioms and then thepossibility of using semantic structures represented by computer ontologies as algebraic structuresopens up. For the correct use of ontologies in artificial intelligence systems, it is necessarythat ontologies along the division planes are metric spaces.

KEYWORDS

artificial intelligence, axiom system, human brain, semantics, measure of difference,artificial intelligence, axiom system, human brain, semantics, measure of difference,internal model of the world, adaptability.

REFERENCES

1. Bostrom, N. (2016), Artificial Intelligence. Stages. Threats. Strategies, Mann.
2. Searle, J. and Minds. (1980), “Brains, and programs”, Behavioral and brain sciences, Vol. 3, no. 3, pp. 417-424.
https://doi.org/10.1017/S0140525X00005756
3. O’Konnor, J. and Makdermott, I. (2014), The Art of Systems Thinking: Essential knowledge of systems and a creative approach to problem solving, Alpina Publisher.
4. Harnad, S. (2006), Searle’s Chinese Room Argument, Encyclopedia of Philosophy, Vol. 2, pp. 239-242.
5. Likopastov, Y. (2014), “Turing test passed”, Gadjets news, available at: http://gadgetsnews.ru/test-tyuringa-projden/ (accessed September 6, 2019).
6. (2014), “λ-calculus. Part One: History and Theory”, available at: https://habr.com/ru/post/215807/ (accessed September 6, 2019).
7. Landin, J.P. (1964), “The mechanical evaluation of expressions”, The Computer Journal. British Computer Society. Vol. 6, no. 4, pp. 308-320.
https://doi.org/10.1093/comjnl/6.4.308
8. Barendregt, X. (1985), Lambda-ischisleniye. Yego sintaksis i semantika [Lambda calculus. Its syntax and semantics], Mir.
9. MacLane, C. (2004), Kategorii dlya rabotayushchego matematika [Categories for working math], Fizmatlit, Moscow, Russia.
10. Milewski, B. (2014), “Category Theory for Programmers”, available at: https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/ (accessed
September 6, 2019).
11. Eagleman, D. (2015), The brain: the story of you, Canongate Books, 257 p.
12. Kahneman, D. (2011), Thinking, Fast and Slow, Farrar, Straus and Giroux, 528 p.
13. Kurchanov N.A. (2012), Povedeniye: evolyutsionnyy podkhod. Uchebnoye posobiye [Behavior:an evolutionary approach. Tutorial], SpetsLit, St. Petersburg, Russia.
14. Redozubov, A. (2012), “Artificial Intelligence as a Set of Issues”, available at: https://habr.com/ru/post/151102/ (accessed September 6, 2019).
15. Kravtsov, G.A. (2016), “Classification Computing Model”, Elektronnoye modelirovaniye, Vol. 38, no. 1, pp. 73-87.
https://doi.org/10.15407/emodel.38.01.073
16. Kravtsov, G.A., Koshel’, V.I, Dolgorukov, A.V. and Turcan, V.V. (2018), “Classification Classification Learning Model”, Elektronnoye modelirovaniye, Vol. 39, no. 3, pp. 63-76.
https://doi.org/10.15407/emodel.40.03.063
17. Semkin, B.I. and Gorshkov, M.V. (2008), “Axiomatic introduction of measures of similarity, difference, compatibility and dependence for components of biodiversity”, Bulletin of the Pacific State Economic University, no. 4, pp. 31-46.
18. Joe, Kim., Muller, C.W. and Kleck, W.R. (1989), Faktornyy, diskriminantnyy i klasternyy analiz [Factor, discriminant and cluster analysis], Finansy i statistika.
19. Jaccard, P. (1901), “Distribution of alpine flora in the Dranses Basin and in a few neighboring regions”, Bulletin of the Vaudoise Society of Natural Sciences, Vol. 37, no. 140, pp. 241-272, DOI : 10.5169/seals-266440.
20. Levandowsky, M. andWinter, D. (1971), “Distance between Sets’’, Nature, Vol. 234, pp. 34-35, DOI : 10.1038/234034a0.
https://doi.org/10.1038/234034a0
21. Sörensen, T. (1948), “A method of establishing groups of equal amplitude in plant sociology based on similarity of species content”, Biologiske Skrifter, Vol. 5, no. 4, pp. 1-34.
22. Kulczynski, S. (1927), “Plant complexes in the Pieniny”, International Newsletter of the Polish Academy of Sciences and Letters, Class of Mathematical and Natural Sciences, Vol. 2, pp. 57-203.
23. Sokal, R.R. and Sneath, P.H.A. (1963), Principles of numerical taxonomy, New York : W.H. Freeman & Co.
24. Szymkiewicz, D. (1934), A statistical contribution to floristic geography, Acta Soc. Bot. Polon, Vol. 34, no. 3, pp. 249-265.
25. Simpson, G. G. (1947), “Holarctic mammalian faunas and continental relationship during the Cenozoic’’, Bull. Geol. Sci. America, Vol. 58, no. 2, pp. 613-688.
https://doi.org/10.1130/0016-7606(1947)58[613:HMFACR]2.0.CO;2
26. Braun-Blanquet, J. (1951), Plant Sociology Fundamentals of Vegetation Science, Springer-Verlag Wien, Berlin, Germany, DOI : 10.1007/978-3-7091-4078-9.
27. Ochiai, A. (1957), “Zoogeographical studies on the solenoid fishes found Japan and its neighboring regions-II”, Bull. Jap. Soc. sci. Fish, Vol. 22, no. 9, pp. 526-530, DOI : 10.2331/suisan.22.526.
28. Sëmkin, B.I. (1979), Ekvivalentnost’ mer blizosti i iyerarkhicheskaya klassifikatsiya mnogomernykh dannykh [Equivalence of proximity measures and hierarchical classification of multidimensional data], Iyerarkhicheskiye klassifikatsionnyye postroyeniya v geograficheskoy ekologii i sistematike, pp. 97-112.
29. Kravtsov G.A. and Koshel’ V.I. (2017), “Classification calculations. Classification classification”, Elektronnoe modelirovaniye, Vol. 39, no. 5, pp. 59-69.
https://doi.org/10.15407/emodel.39.05.059
30. Ivlev, YU.V. (2008), Logika [Logics], Prospekt, Moscow, Russia.
31. “Letters !: Rules of division in logic and errors in division”, available at: http://bukvi.ru/pravo/logika/pravila-deleniya-v-logike-i-oshibki-v-delenii.html (accessed September 6, 2019).

Full text: PDF

FEATURES OF THE MODEL OF THE OFFENDER AT THE ANALYSIS OF ATTACKS ON GLOBAL INTERNET ROUTING

V.Yu. Zubok

Èlektron. model. 2019, 41(5):59-70
https://doi.org/10.15407/emodel.41.05.059

ABSTRACT

A model of information security breach is proposed. Through analysis of threats and methods ofA model of information security breach is proposed. Through analysis of threats and methods ofconducting attacks on global routing it is established that the source of such threats are externalviolators. The classification of such violators is given and an informal model of the security violatoris developed.

KEYWORDS

global routing, route hijack, threats model, information security intruder model,global routing, route hijack, threats model, information security intruder model,cybersecurity

REFERENCES

1. Bates, T. and Gerich, E. (1994), “Representation of IP Routing Policies in a Routing Registry (ripe181)”, available at: ftp://ftp.ripe.net/ripe/docs/ripe-181.txt (accessed Jun 20, 2019).
2. Zubok, V. (2018), “Determining the ways of counteraction To cyberattacks on the Internet global routing”, Elektron. modelyuvannya, Vol. 40, no. 5, pp. 67-76.
https://doi.org/10.15407/emodel.40.05.067
3. Levy, M.J. (2019), “The deep-dive into how Verizon and a BGP Optimizer Knocked Large Parts of the Internet Offline Monday”, available at: https://blog.cloudflare.com/the-deep-diveinto-how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-monday/(accessed Jul 27, 2019).
4. Zubok, V. (2019), “Global Internet Routing Cyber attacks Risk Assessment”, Elektronne modelyuvannya, Vol. 41, no. 2, pp. 97-110.
5. Graivoronskyi, M. and Novikov, O. (2009), Bezpeka informatsiyno-kommunikaciynykh system [Security of Information Communication Systems], Vyd. hrupa BHV, Kiev, Ukraine.
6. Shapelez, A. (2019), “Eliminating opportunities for traffic hijacking”, available at: https://habr.com/en/company/qrator/blog/442264/ (accessed Jul 27, 2019).

Full text: PDF