Electronic modeling

Vol 41, No 3 (2019)

 

CONTENTS

Mathematical Modeling and Computation Methods

  SAUKH S.Ye., BORISENKO A.V.
Method of Forecasting the Dynamics of Monthly Electricity Production by NPP Units of Ukraine


3-14
  KRASILNIKOV A.I.
Family of Subbotin Distributions and its Classification


15-32
  IVANIUK V.A., FEDORCHUK V.A.
Adaptive Method of Identification of Models of Nonlinear Dynamic Systems with Using Integral Volterra Series


33-42
  TKACHUK V.M., KOZLENKO M.I., KUZ M.V., LAZAROVYCH I.M., DUTCHAK M.C. Function
Optimization Based on Higher-Order Quantum Genetic Algorithm

43-58

Parallel Computations

  HILGURT S.Ya.
Analysis: Fpga-Based Cams and Digital Comparators for Pattern Matching in Network Security

59-80

Application of Modeling Methods and Facilities

  KUTSAN Yu.G., GODUN O.V., KYRIANCHUK V.N.
Sensitivity Analysis for Comparative Evaluation of Ukrainian Nuclear Fuel Cycle


81-92
  FARHADZADEH E.M., MURADALIYEV A.Z., RAFIYEVA T.K., RUSTAMOVA A.A.
Computer Technology of the Estimation of Interrelation Technical and Economic Parameters of Power Units


93-104
 
KRUKOVSKIY P.H., TADLIA O.Yu., DEINEKO A.I., SKLYARENKO D.I., OLIINYK V.S.
Kyiv Subway Tunnels Thermal and Humidity State Modeling

105-118

METHOD OF FORECASTING THE DYNAMICS OF MONTHLY ELECTRICITY PRODUCTION BY NPP UNITS OF UKRAINE

S.Ye. Saukh, A.V. Borisenko

Èlektron. model. 2019, 41(3):03-14

ABSTRACT

We present the results of the analysis of data on the installed capacities of the power units, theWe present the results of the analysis of data on the installed capacities of the power units, thevolumes of their electricity production, the frequency and duration of previously completed capitaland medium repairs of the main equipment of the NPP. A method of long-term forecasting ofschedules for the implementation of preventive maintenance of the main equipment of NPPs ofthe company SE “NNEGC Energoatom” and the volumes of electricity generation by NPP unitsis proposed. We present the results of using proposed method for forecasting the monthly dynamicsof the volumes of electricity generation by power units in modern conditions of nuclear powerdevelopment.

KEYWORDS

NPP power unit, repair, power generation, forecast.

REFERENCES

1. Available at: https://ua.boell.org/sites/default/files/transition_of_ukraine_to_the_renewable_
energy_by_2050_1.pdf
2. Available at: http://www.npp.zp.ua/Home/Production
3. Available at: https://www.sunpp.mk.ua/uk/activities/tep/chart
4. Available at: http://www.rnpp.rv.ua
5. Available at: http://www.xaec.org.ua/store/pages/ukr/techekparams/latest
6. Available at: http://document.ua/pro-pidgotovku-obladnannja-elektrostancii-i-teplovih-merezh—
doc324051.html
7. Available at: http://consultant.parus.ua/?doc=0ANAN7F275
8. Available at: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=66114
9. Available at: http://consultant.parus.ua/?doc=09VFD68889
10. Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=244950494
11. Available at: http://mpe.kmu.gov.ua/minugol/doccatalog/document?id=229324
12. Available at: http://zakon.rada.gov.ua/rada/show/v0578732-12/sp:max10
13. Available at: http://zakon.rada.gov.ua/rada/show/va006732-11
14. Skalozubov, V.I., Kovrizhkin, Yu.L. and Kolykhanov, V.N. (2008), Optimizatsiya planovykh
remontov energoblokov atomnykh elektrostantsiy s VVER [Optimization of scheduled
repairs of power units of nuclear power plants with VVER], Institute of NPP Safety Problems,
Kiev, Ukraine.
15. Yefimov, A.V., Potanina, T.V. and Kravets, V.L. (2012), “Application of interval statistics
methods for diagnosing the technical condition of equipment and planning the duration of repairs
of power units of thermal power plants and nuclear power plants”, Energosberezheniye.
Energetika. Energoaudit, no. 5, pp. 20-26.
16. Available at: https://zakon.rada.gov.ua/laws/show/z1224-16
17. Available at: http://www.rosenergoatom.ru/upload/iblock/376/37644e5aa93eec0702537
d60b9511e84.pdf
18. Available at: http://www.energoatom.kiev.ua/ua/press_centr-19/presentations-39/p/vistup_
prezidenta_energoatoma_uria_nedaskovs_kogo_na_komitets_kih_sluhannah_na_temu_
aderna_energetika_ukraini_vikliki_ta_perspektivi-3521
19. Available at: https://www.kmu.gov.ua/ua/npas/pro-shvalennya-tehniko-ekonomichnogoobgruntuvannya-
budivnictvo-energoblokiv-3-4-hmelnickoyi-aes-m-netishin-vul-energetikivkoriguvannya

Full text: PDF

FAMILY OF SUBBOTIN DISTRIBUTIONS AND ITS CLASSIFICATION

A.I. Krasilnikov

Èlektron. model. 2019, 41(3):15-32

ABSTRACT

The properties of the probability density, its parameters, the central moments, and the cumulantThe properties of the probability density, its parameters, the central moments, and the cumulantcoefficients of the Subbotin distribution family were investigated. Based on the properties of thederivative of the probability density and cumulant coefficients, a classification of the Subbotinfamily of distributions was proposed, and criteria for choosing the probability density for approximatingthe distributions of non-Gaussian random variables were established.

KEYWORDS

family of Subbotin distributions, generalized Gaussian distribution, generalizedfamily of Subbotin distributions, generalized Gaussian distribution, generalizednormal distribution, error distribution.

REFERENCES

1. Kendall, M. and Stiuart, A. (1966), Teoriia raspredelenii [Distribution Theory], Translated by Sazonov, V.V. and Shiriaev, A.N., Edited by Kolmogorov, A.N., Nauka, Moscow, Russia.
2. Aivazian, S.A., Eniukov, I.S. and Meshalkin, L.D. (1983), Prikladnaia statistika: Osnovy modelirovaniia i pervichnaia obrabotka dannykh. Spravochnoe izd. [Applied Statistics: Bases of Modelling and Initial Data Processing. Reference edition], Finansy i statistika, Moscow, Russia.
3. Subbotin, M.T. (1923), “On the law of frequency of error”, Matematicheskii sbornik, Vol. 31, no. 2, pp. 296-301.
4. Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011), Statistical Distributions. Fourth Edition, John Wiley & Sons, New Jersey.
https://doi.org/10.1002/9780470627242
5. Novitskii, P.V. and Zograf, I.A. (1991), Otsenka pogreshnostei rezultatov izmerenii [Error Estimation in Measurement Results], Energoatomizdat, St. Petersburg, Russia.
6. Shelukhin, O.I. (1999), Negaussovskie protsessy v radiotekhnike [Non-Gaussian Processes in Radio Engineering], Radio i sviaz, Moscow, Russia.
7. Saatci, E. and Akan, A. (2010), “Respiratory parameter estimation in non-invasive ventilation based on generalized Gaussian noise models”, Signal processing, Vol. 90, no. 2, p. 480-489.
https://doi.org/10.1016/j.sigpro.2009.07.015
8. Sharifi, K. and Leon-Garcia, A. (1995), “Estimation of shape parameter for generalized Gaussian distribution in subband decomposition of video”, IEEE Trans. on Circuits and Systems for Video Technology, Vol. 5, no. 1, pp. 52-56.
https://doi.org/10.1109/76.350779
9. Dominguez-Molina, J.A., Gonzalez-Farias, G. and Rodriguez-Dagnino, R.M. (2001), A practical procedure to estimate the shape parameter in the generalized Gaussian distribution, available at: http://www.cimat.mx/reportes/enlinea/I-01-18_eng.pdf
10. Nadarajah, S. (2005), “A generalized normal distribution”, Journal of Applied Statistics, Vol. 32, no. 7, pp. 685-694.
https://doi.org/10.1080/02664760500079464
11. Pogany, T.K. and Nadarajah, S. (2010), “On the characteristic function of the generalized normal distribution”, Comptes Rendus Mathåmatique, 348(3), pp. 203-206.
https://doi.org/10.1016/j.crma.2009.12.010
12. Crowder, G.E. and Moore, A.H. (1983), “Adaptive Robust Estimation Based on a Family of Generalized Exponential Power Distributions”, IEEE Transactions on Reliability, Vol. R-32, no. 5, pp. 488-495.
https://doi.org/10.1109/TR.1983.5221739
13. Varanasi, M.K. and Aazhang, B. (1989), “Parametric generalized Gaussian density estimation”, J. Acoust. Soc. Am., Vol. 86, no. 4, pp. 1404-1415.
https://doi.org/10.1121/1.398700
14. Zabolotnii, S.V., Chepynoha, A.V., Bondarenko, Yu.Yu. and Rud, M.P. (2018), “Polynomial estimates of parameters for data with exponential power distribution”, Visnyk NTUU KPI. Seriia radiotekhnika, radioaparatobuduvannia, no. 75, pp. 40-47.
15. Nardon, M. and Pianca, P. (2009), “Simulation techniques for generalized Gaussian densities”, Journal of Statistical Computation and Simulation, Vol. 79, Issue 11, pp. 1317-1329.
https://doi.org/10.1080/00949650802290912
16. Kalke, S. and Richter, W.-D. (2013), “Simulation of the p-generalized Gaussian distribution”, Journal of Statistical Computation and Simulation, Vol. 83, no. 4, pp. 639-665.
https://doi.org/10.1080/00949655.2011.631187
17. Ianke, E., Emde, F. and Lesh, F. (1964), Spetsialnye funktsii (formuly, grafiki, tablitsy) [Tafeln Höherer Funktionen], Translated by Sedov L.I., Nauka, Moscow, Russia.
18. Dvait, G.B. (1977), Tablitsy integralov i drugie matematicheskie formuly [Tables of Integrals and Other Mathematical Data], Translated by Levi, N.V., Edited by Semendiaev K.A., Nauka, Moscow, Russia.

Full text: PDF

ADAPTIVE METHOD OF IDENTIFICATION OF MODELS OF NONLINEAR DYNAMIC SYSTEMS WITH USING INTEGRAL VOLTERRA SERIES

V.A. Ivaniuk, V.A. Fedorchuk

Èlektron. model. 2019, 41(3):33-42

ABSTRACT

The article is devoted to the problem of identifying models of nonlinear dynamic systems, presentedThe article is devoted to the problem of identifying models of nonlinear dynamic systems, presentedin the form of Volterra integral series. When applying the traditional approach, the keyproblem is to conduct numerous necessary experiments, which grows in an exponential relationshipwith respect to the dimension of the nucleus. A significant number of experiments, in manycases, make it impossible to use the Volterra series method for studying nonlinear dynamical systems.An adaptive method for identifying models of nonlinear dynamic systems is proposed,which allows obtaining models in the form of Volterra series with preservation of adequacy withrespect to models obtained by the traditional method, but the number of necessary experiments tobuild nuclei is less by about a one order of magnitude. The proposed method is considered toidentify thetwo-dimensional kernel. The results can be extended to cases with higher-orderVolterra kernels.

KEYWORDS

dentification of nonlinear dynamic systems, Volterra series, adaptive method ofdentification of nonlinear dynamic systems, Volterra series, adaptive method ofidentification.

REFERENCES

1. Ivanyuk, V.A., Ponedilok, V.V. and Hryshchuk, V.A. (2014), “Computer realization deterministic method of identifying integrated models of nonlinear dynamic objects”, Zbirnyk naukovykh prats “Matematychne ta kompyuterne modelyuvannya”. Seriya: Tekhnichni nauky: Kamyanets-Podilskyy: Kamyanets-Podilskyy natsionalnyy universytet imeni Ivana Ohiyenka, no. 10, pp. 59-67.
2. Pupkov, K.A., Kapalin, V.I. and Yushchenko, A.S. (1976), Funktsionalnyye ryady v teorii nelineynykh sistem [Functional series in the theory of nonlinear systems], Nauka, Moscow, USSR.
3. Sidorov, D. (2013), Metody analiza integralnykh dinamicheskikh modeley: teoriya i prilozheniya [Methods of analysis of integral dynamic models: theory and applications], Izdatelstvo IGU, Irkutsk, Russia.

Full text: PDF

Function Optimization Based on Higher-Order Quantum Genetic Algorithm

V.M. Tkachuk, Ph.D. (Phys.-Math.), M.I. Kozlenko, Ph.D (Eng.),
M.V. Kuz Dr.Sc. (Eng.), I.M. Lazarovych Ph.D. (Eng.), M.C. Dutchak
Vasyl Stefanyk Precarpathian National University
(57 Shevchenko str., Ivano-Frankivsk, 76018, Ukraine,
e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2019, 41(3):43-58

ABSTRACT

Quantum genetic algorithms (QGA) are typically built using the traditional representation of theQuantum genetic algorithms (QGA) are typically built using the traditional representation of thequantum chromosome in the form of system of independent qubits. This makes it impossible touse a very powerful quantum calculations mechanism, namely quantum state entanglement. Inthis paper we implement a higher-order QGA and illustrate efficiency of the algorithm on the basisof example of optimization problem solved for a test functions set. An adaptive quantum gateoperator, which does not require a lookup table is also proposed. In comparison to traditionalQGA, the transition to higher (more than two) orders in the algorithm implementation showsmuch better results in terms of the running time, convergence speed and solution precision.

KEYWORDS

function optimization, quantum state entanglement, quantum genetic algorithm,function optimization, quantum state entanglement, quantum genetic algorithm,quantum computation, quantum register.

REFERENCES

1. Han, K.-H. and Kim, J.-H. (2000), “Genetic quantum algorithm and its application to combinatorial optimization problem”, Proceedings of the 2000 Congress on Evolutionary Computation,
USA, 2, pp. 1354-1360.
2. Roy, U., Roy, S. and Nayek, S. (2014), “Optimization with quantum genetic algorithm”, International Journal of Computer Applications, Vol. 102, no. 16, pp. 1-7.
3. Zhang, G. (2011), “Quantum-inspired evolutionary algorithms: a survey and empirical study“, Journal of Heuristics, Vol. 2011, no. 17, pp. 303-351.
https://doi.org/10.1007/s10732-010-9136-0
4. Wang, H., Liu, J., Zhi, J. and Fu, C. (2013), “The Improvement of Quantum Genetic Algorithm and Its Application on Function Optimization”, Mathematical Problems in Engineering, Vol. 2013.
https://doi.org/10.1155/2013/730749
5. Wang, L., Kowk, S.K. and Ip, W.H. (2012), “Design of an improved quantum-inspired evolutionary algorithm for a transportation problem in logistics systems”, Journal of Intelligent Manufacturing, pp. 2227-2236.
https://doi.org/10.1007/s10845-011-0568-7
6. Jantos, P., Grzechca, D. and Rutkowski, J. (2012), “Evolutionary algorithms for global parametric
fault diagnosis in analogue integrated circuits”, Bull. Pol. Tech, Vol. 60, pp. 133-142.
https://doi.org/10.2478/v10175-012-0019-4
7. Talbi, H., Batouche, M. and Draa, A. (2007), “A Quantum-Inspired Evolutionary Algorithm for Multiobjective Image Segmentation”, International Journal of Nuclear and Quantum Engineering, Vol. 1, pp. 109-114.
8. Qin, C., Liu, Y. and Zheng, J. (2008), “A real-coded quantum-inspired evolutionary algorithm for global numerical optimization”, 2008 IEEE Conference on Cybernetics and Intelligent Systems, pp. 1160-1164.
https://doi.org/10.1109/ICCIS.2008.4670779
9. Lin, D. and Waller, S. (2009), “A quantum-inspired genetic algorithm for dynamic continuous network design problem”, Transportation Letters: The International Journal of Transportation Research, Vol. 1, pp. 81-93.
https://doi.org/10.3328/TL.2009.01.01.81-93
10. Malossini, A., Blanzieri, E. and Calarco, T. (2008), “Quantum genetic optimization”, IEEE Trans. Evol. Comput, Vol. 12, pp. 231-241.
https://doi.org/10.1109/TEVC.2007.905006
11. SaiToh, A., Rahimi, R. and Nakahara, M. (2014), “A quantum genetic algorithm with quantum crossover and mutation operations”, Quantum Information Process, Vol. 13, pp. 737-755.
https://doi.org/10.1007/s11128-013-0686-6
12. Lahoz-Beltra, R. (2016), “Quantum Genetic Algorithms for Computer Scientists”, Computers, Vol. 5, no. 4.
https://doi.org/10.3390/computers5040024
13. Tkachuk, V. (2018). “Quantum Genetic Algorithm onMultilevel Quantum Systems”, Mathematical Problems in Engineering, Vol. 2018.
https://doi.org/10.1155/2018/9127510
14. Narayanan, A. and Moore, M. (1996), “Quantum-inspired genetic algorithms”, Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC’96), Nagoya, Japan, pp. 61-66.
https://doi.org/10.1109/ICEC.1996.542334
15. Nowotniak, R. and Kucharski, J. (2014), “Higher-Order Quantum-Inspired Genetic Algorithms”, Federated Conference on Annals of Computer Science and Information Systems, Vol. 2, pp. 465-470.
https://doi.org/10.15439/2014F99
16. Ullah, S. and Wahid, M. (2015), “Topology Control of Wireless Sensor Network Using Quantum Inspired Genetic Algorithm”, International Journal of Swarm Intelligence and Evolutionary Computation, Vol. 4.
https://doi.org/10.4172/2090-4908.1000121
17. Tkachuk, V. (2018), “Quantum Genetic Algorithm Based on Qutrits and Its Application”, Mathematical Problems in Engineering, Vol. 2018.
https://doi.org/10.1155/2018/8614073
18. Sun, Y. and Xiong, H. (2014), “Function Optimization Based on Quantum Genetic Algorithm”, Research Journal of Applied Sciences, Engineering and Technology, Vol. 7, no. 1, pp. 144-149, ISSN: 2040-7459; e-ISSN: 2040-7467.
https://doi.org/10.19026/rjaset.7.231
19. Kuo, S.-Y. and Chou, Y.-H. (2017), “Entanglement-Enhanced Quantum-Inspired Tabu Search Algorithm for Function Optimization”, IEEE Access, Vol. 5, pp. 13236-13252.
https://doi.org/10.1109/ACCESS.2017.2723538

Full text: PDF