Ya.A. Kalinovsky, Y.E. Boyarinova, Ya.V. Khitsko, A.S. Sukalo
Èlektron. model. 2018, 40(6):05-19
https://doi.org/10.15407/emodel.40.06.005
ABSTRACT
The paper considers the synthesis of algorithms for linear convolution of arrays, whose length is not equal 2n, for which the methods of hypercomplex number systems (HNS) are used. The synthesis is based on the recurrent fringing of sums of pair products of convolution counts with subsequent application of isomorphic hypercomplex numerical systems. The obtained algorithms by the number of multiplications are nearly to the algorithms of Vinograd.
KEYWORDS
hypercomplex numerical system, linear convolution, isomorphism, ultiplication, bicomplex numbers, quadriplex numbers.
REFERENCES
1. Bleichut, R. (1989), Bystryye algoritmy tsifrovoy obrabotki signalov [Rapid algorithms of digital signal processing], Mir, Moscow, Russia.
2. Nussbaumer G. (1985), Bystroye preobrazovaniye Furye i algoritmy vychisleniya svertok [Fast Fourier transform and computation algorithms], Radio and svyaz, Moscow, Russia.
3. Sergienko, A.B. (2003), Tsifrovaya obrabotka signalov [Digital signal processing], Piter, St. Petersburg, Russia.
4. Goldenberg, L.M., Matushkin, B.D. and Polak, Ì.N. (1985), Tsifrovaya obrabotka signalov [Digital signal processing], Radio i svyaz, Moscow, Russia.
5. Kalinovsky, Ya.A. (2013), “Structure of the hypercomplex method for fast calculation of linear convolution of discrete signals”, Reyestratsiya, zberihannya i obrobka danykh, Vol. 15, no. 1, pp. 31-44.
6. Sinkov, M.V., Boyarinova, Yu.E. and Kalinovsky, Ya.A. (2010), Konechnomernye giperkompleksnye chislovye sistemy [Finite-dimensional hypercomplex numerical systems. Fundamentals of the theory. Applications], Infodruk, Kiev, Ukraine.
7. Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2012), Vysokorazmernye izomorfnye giperkompleksnye chislovye sistemy. Osnovy teorii. Primeneniya [High-dimensional isomorphic hypercomplex number systems and their use for increasing the efficiency of computations], Infodruk, Kiev, Ukraine.
8. Kalinovsky, Ya.A., Boyarinova, Yu.E., Sinkova, T.V. and Sukalo, A.S. (2016), “Construction of high-dimensional isomorphic hypercomplex numerical systems to improve the efficiency of computing processes”, Elektronnoe modelirovanie, Vol. 38, no. 6, pp. 67-84.
https://doi.org/10.15407/emodel.38.06.067
9. Kantor, I.L. and Solodovnikov, À.S. (1973), Hiperkompleksnye chisla [Hypercomplex numbers], Nauka, Moscow, Russia.
10. Kalinovsky, Ya.O. (2007), “Development of methods for the theory of hypercomplex number systems for mathematical modeling and computer calculations”, Abstract of Cand. Sci. (Tech.) dissertation, 01.05.02, Kuiv.
11. Kalinovsky, Ya.A. and Sinkova, Ò.V. (2014), “Algorithms for rapid calculation of cyclic convolution with representation of discrete signals by hypercomplex numbers”, Reyestratsiya, zberihannya i obrobka danykh, Vol. 16, no. 1, pp. 9-18.
12. Kalinovsky, Ya.A., Boyarinova, Y.E., Sukalo, A.S. and Khitsko, Y.V. (2017), “The basic principles and the structure and algorithmically software of computing by hypercomplex number”, available at: arXiv: 1708.04021.
13. Kalinovsky, Ya.A., Boyarinova, Yu.E., Khitsko, Ya.V. and Sukalo, A.S. (2017), “Software complex for hypercomplex calculations”, Elektronnoe modelirovanie, Vol. 39, no. 5, pp. 81-96.
Full text: PDF