Electronic modeling

Vol 40, No 6 (2018)

https://doi.org/10.15407/emodel.40.06

CONTENTS

Mathematical Modeling and Computation Methods

  Ya.A. Kalinovsky, Y.E. Boyarinova, Ya.V. Khitsko, A.S. Sukalo
THE STRUCTURE OF A SEQUENTIAL METHOD FOR CONSTRUCTING LINEAR CONVOLUTION ALGORITHMS WITH THE HELP OF THE HNS


5-19
  N.V. Yefymenko
MATHEMATICAL MODEL OF THE ANGULAR MOTION OF A SPACECRAFT IN THE RODRIG-HAMILTON PARAMETERS AND ITS PROPERTIES

21-35

Computational Processes and Systems

  K.B. Ostapchenko, O.I. Lisovychenko, Z.Kh. Borukaev
OBJECT-ORIENTED MODELING OF THE PROCESSES OF FUNCTIONING OF SUBJECTS OF ORGANIZATIONAL AND TECHNICAL SYSTEMS

37-52

Application of Modeling Methods and Facilities

  H.A. Kravtsov, A.V. Zupko
Blockchain and Science


53-60
  O.E. Kovalenko
SYSTEMS ENGINEERING AND SYSTEMS LIFE CYCLE


61-82
 
83-100
  N.V. Prykhodko, S.B. Prykhodko
Constructing the Nonlinear Regression Models on the Basis of Multivariate Normalizing Transformations

101-110

THE STRUCTURE OF A SEQUENTIAL METHOD FOR CONSTRUCTING LINEAR CONVOLUTION ALGORITHMS WITH THE HELP OF THE HNS

Ya.A. Kalinovsky, Y.E. Boyarinova, Ya.V. Khitsko, A.S. Sukalo

Èlektron. model. 2018, 40(6):05-19
https://doi.org/10.15407/emodel.40.06.005

ABSTRACT

The paper considers the synthesis of algorithms for linear convolution of arrays, whose length is not equal 2n, for which the methods of hypercomplex number systems (HNS) are used. The synthesis is based on the recurrent fringing of sums of pair products of convolution counts with subsequent application of isomorphic hypercomplex numerical systems. The obtained algorithms by the number of multiplications are nearly to the algorithms of Vinograd.

KEYWORDS

hypercomplex numerical system, linear convolution, isomorphism, ultiplication, bicomplex numbers, quadriplex numbers.

REFERENCES

1. Bleichut, R. (1989), Bystryye algoritmy tsifrovoy obrabotki signalov [Rapid algorithms of digital signal processing], Mir, Moscow, Russia.
2. Nussbaumer G. (1985), Bystroye preobrazovaniye Furye i algoritmy vychisleniya svertok [Fast Fourier transform and computation algorithms], Radio and svyaz, Moscow, Russia.
3. Sergienko, A.B. (2003), Tsifrovaya obrabotka signalov [Digital signal processing], Piter, St. Petersburg, Russia.
4. Goldenberg, L.M., Matushkin, B.D. and Polak, Ì.N. (1985), Tsifrovaya obrabotka signalov [Digital signal processing], Radio i svyaz, Moscow, Russia.
5. Kalinovsky, Ya.A. (2013), “Structure of the hypercomplex method for fast calculation of linear convolution of discrete signals”, Reyestratsiya, zberihannya i obrobka danykh, Vol. 15, no. 1, pp. 31-44.
6. Sinkov, M.V., Boyarinova, Yu.E. and Kalinovsky, Ya.A. (2010), Konechnomernye giperkompleksnye chislovye sistemy [Finite-dimensional hypercomplex numerical systems. Fundamentals of the theory. Applications], Infodruk, Kiev, Ukraine.
7. Kalinovsky, Ya.A. and Boyarinova, Yu.E. (2012), Vysokorazmernye izomorfnye giperkompleksnye chislovye sistemy. Osnovy teorii. Primeneniya [High-dimensional isomorphic hypercomplex number systems and their use for increasing the efficiency of computations], Infodruk, Kiev, Ukraine.
8. Kalinovsky, Ya.A., Boyarinova, Yu.E., Sinkova, T.V. and Sukalo, A.S. (2016), “Construction of high-dimensional isomorphic hypercomplex numerical systems to improve the efficiency of computing processes”, Elektronnoe modelirovanie, Vol. 38, no. 6, pp. 67-84.
https://doi.org/10.15407/emodel.38.06.067
9. Kantor, I.L. and Solodovnikov, À.S. (1973), Hiperkompleksnye chisla [Hypercomplex numbers], Nauka, Moscow, Russia.
10. Kalinovsky, Ya.O. (2007), “Development of methods for the theory of hypercomplex number systems for mathematical modeling and computer calculations”, Abstract of Cand. Sci. (Tech.) dissertation, 01.05.02, Kuiv.
11. Kalinovsky, Ya.A. and Sinkova, Ò.V. (2014), “Algorithms for rapid calculation of cyclic convolution with representation of discrete signals by hypercomplex numbers”, Reyestratsiya, zberihannya i obrobka danykh, Vol. 16, no. 1, pp. 9-18.
12. Kalinovsky, Ya.A., Boyarinova, Y.E., Sukalo, A.S. and Khitsko, Y.V. (2017), “The basic principles and the structure and algorithmically software of computing by hypercomplex number”, available at: arXiv: 1708.04021.
13. Kalinovsky, Ya.A., Boyarinova, Yu.E., Khitsko, Ya.V. and Sukalo, A.S. (2017), “Software complex for hypercomplex calculations”, Elektronnoe modelirovanie, Vol. 39, no. 5, pp. 81-96.

Full text: PDF

MATHEMATICAL MODEL OF THE ANGULAR MOTION OF A SPACECRAFT IN THE RODRIG-HAMILTON PARAMETERS AND ITS PROPERTIES

N.V. Yefymenko

Èlektron. model. 2018, 40(6):21-35
https://doi.org/10.15407/emodel.40.06.021

ABSTRACT

A model of the rotational motion of a space vehicle in the form of a second-order differential equation with respect to the Rodrig-Hamilton paralleleters is considered. The properties of this equation are studied and a technique for the synthesis of spacecraft orientation algorithms is proposed, which makes it possible to find program trajectories of the reorientation of space vehicles. The results of experimental verification of the proposed technique on the Sich-2 spacecraft are presented.

KEYWORDS

Rodrig-Hamilton parameters, spacecraft, quaternion, orientation, dynamical equation for the quaternion.

REFERENCES

1. Koshlyakov, V.N. (1985), Zadachi dinamiki tverdogo tela i prikladnoy teorii giroskopov [Problems of the dynamics of a rigid body and the applied theory of gyroscopes], Nauka, Moscow, Russia.
2. Branets, V.N. and Shmyglevsky, I.P. (1973), Primeneniye kvaternionov v zadachakh oriyentatsii tverdogo tela [The use of quaternions in solid orientation problems], Nauka, Moscow, Russia.
3. Chelnokov, Yu.N. (1994), “Quaternionic solution of kinematic problems of controlling the orientation of a rigid body: Error equations, laws and algorithms for correction (stabilization)”, Mekhanika tverdogo tela, no. 4, pp. 3-12.
4. Chelnokov, Yu.N. (1994), “Control of the orientation of the spacecraft using quaternions”, Kosmicheskiye issledovaniya, Vol. 32, no. 3, pp. 21-32.
5. Chelnokov, Yu.N. (2002), “The construction of controls for the angular motion of a rigid body, using quaternions and standard forms of equations of transient processes”, Mekhanika tverdogo tela, no. 1, pp. 3-17.
6. Lebedev, D.V. (1981), “On the Control of the Three-axis Orientation of a Solid Body”, Avtomat, no. 3, pp. 77-80.
7. Lebedev, D.V. (1990), “On the control of motion around the center of mass of a rotating rigid body”, Prikladnaya matematika i mekhanika, Vol. 54, no. 1, pp. 18-25.
8. Lebedev, D.V., Tkachenko, A.I. and Shtepa, Yu.N. (1996), “Magnetic system for controlling the angular motion of a microsatellite”, Kosmichna nauka i tehnologii, Vol. 2, no. 56, pp. 17-25.
9. Lebedev, D.V. and Tkachenko, A.I. (1997), “Magnetometric system for determining the parameters of motion of a spacecraft”, Problemy upravleniya i informatiki, no. 4, pp. 139-154.
10. Wie, B. (1985), “Quaternion Feedback for Spacecraft Large Angle Maneuvers”, Journal of Guidance, Control and Dynamics, Vol. 8, pp. 360-365.
https://doi.org/10.2514/3.19988
11. Gulyaev, V.I. and Koshkin, V.L. (1993), “Optimal control of the orientation of systems of solid and deformable bodies in a central force field”, Tekhnicheskaya kibernetika, no. 4, pp. 125-132.
12. Gavrilova, N.L. and Tkachenko , A.I. (1974), “On the stabilization of the position of a solid body”, Avtomatika, no. 6, pp. 3-8.
13. Wittenburg, I. (1990), Dinamika sistem tverdykh tel [Dynamics of solids systems], Mir, Moscow, Russia.
14. Yefymenko, N.V. (2015), “Synthesis of control algorithms for spatial reorientation of a spacecraft using dynamic equations of rotational motion of a rigid body in the parameters of Rodrig-Hamilton”, Problemy upravleniya i informatika, no. 3, pp. 145-155.
15. Kirichenko, N.V. and Matvienko, V.T. (2003), “Algorithms of asymptotic, terminal and  adaptive stabilization of rotational motions of a solid body”, Problemy upravleniya i informatika, no. 1, pp. 5-15.

Full text: PDF

OBJECT-ORIENTED MODELING OF THE PROCESSES OF FUNCTIONING OF SUBJECTS OF ORGANIZATIONAL AND TECHNICAL SYSTEMS

K.B. Ostapchenko, O.I. Lisovychenko, Z.Kh. Borukaev

Èlektron. model. 2018, 40(6):37-52
https://doi.org/10.15407/emodel.40.06.037

ABSTRACT

An object-oriented model of subjects functioning processes in organizational-technical systems (OTS) is proposed. The procedure of constructing an information model has been formalized, including the stages of object analysis of the subject area (SA) of organizational management subjects and object-oriented modeling of its entities. The SA specification of organizational management systems has been developed in order to construct computer models of subjects and processes in them. The specification is intended to form a single database structure for designing computer models of organizational management. It consists of a describing system of SA modeling objects and constructing tools for scenarios of subjects functioning in OTS.

KEYWORDS

modeling system, object-oriented model, organizational and technical system, organizational management system.

REFERENCES

1. Sorokin, I.V. (2013), “Problems of research of complex organizational and technical system”, Vestnik MGTU MIREA, Vol. 1, no. 1, pp. 20-40.
2. Novikov, D.A. (2012), Theory of Organizational Systems Management, Publishing house of physical and mathematical literature, Moscow, Russia.
3. Borukaev, Z.Kh., Ostapchenko, K.B. and Lisovychenko, O.I. (2017), “Approach to building decision support systems for automating the processes of organizational management of the energy market”, Adaptive system of automatic control, Vol. 1, no. 30, pp. 29-43.
4. Borukaev, Z.Kh., Ostapchenko, K.B. and Lisovychenko, O.I. (2018), “The concept of building an information technology platform for designing decision support systems for the organizational management of the energy market”, Adaptive system of automatic control, Vol. 1, no. 32, pp. 3-14.
5. IEC 62325-301 (2018), “Framework for energy market communications. Part 301: Common information model (CIM) extensions for markets”, available at: https://webstore.iec.ch/ publication/31487.
6. IEC 62325-351 (2016), “Framework for energy market communications. Part 351: CIM European market model exchange profile”, available at: https://webstore.iec.ch/publication/25128.
7. Graham, I. (2004), Object Oriented Methods: Principles and practices, Williams, Moscow, Russia.
8. Buch, G. (2008), Object-oriented analysis and design with examples of applications in C++, Translated by Romanovsky, I. and Andreeva, F., Williams, Ìoscow, Russia.

Full text: PDF

Blockchain and Science

H.A. Kravtsov, Cand. Sc. (Eng.), A.V. Zupko, Post-graduate,
G.E. Pukhov Inst. for Modeling in Energy Engineering
of National Academy of Sciences of Ukraine
(15, General Naumov Str., 03164, Kiev, Ukraine,
òel. (044) 4241063, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.)

Èlektron. model. 2018, 40(6):53-60
https://doi.org/10.15407/emodel.40.06.0533

ABSTRACT

The scientific community is actively discussing how blockchain technology can solve some specific challenges like limited access to research results, General Data Protection Regulation (GDPR) compliance, reproducibility crisis and absence of negative results that are rarely shared. In this paper authors make an attempt to address the main advantages of the blockchain technology and simulate the situation when some steps in a research lifecycle can leverage these advantages. Some examples how blockchain can streamline the whole scientific process are shown.

KEYWORDS

blockchain, GDPR, compliance, transparency, trust, decentralization, security, fraud prevention, value exchange, micropayments, consensus.

REFERENCES

1. Imran Bashir. Mastering Blockchain, Distributed ledgers, decentralization and start contracts explained.
2. Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming, Prentice Hall; 1 edition.
3. Evan Tan. Types of Consensus Protocols Used in Blockchains, available at: https:// hackernoon.com/types-of-consensus-protocols-used-in-blockchains- 6edd20951899.
4. Intial Coin Offering (ICO) Investopedia, available at: https://www.investopedia.com/terms/i/initial-coin-offering-ico.asp.
5. Grid+ Raises $29 Million as Blockchain Fever Grows, Jason Deign, greentech media, Sep. 22, 2017, available at: https://www.greentechmedia.com/articles/read/grid-raises-40-million-asblockchain-fever-grows#gs.zd2DOPg.
6. Blockchain Energy Trading Startup Power Ledger Raises $17M in Cryptocurrency CO Jeff st. John, greentechmedia, Sep. 06, 2017, available at: https://www.greentechmedia.com/articles/read/power-ledger-blockchain-energy-trading-startup-raises-17-cryptocurrency#gs.6G6CYYI.
7. Blockchain for science and knowledge creation, Dr.med.S onkeBartling, Benedikt Fecher, August 2016, available at: https://www.researchgate.net/publication/306107836_Blockchain_for_science_and_knowledge_creation_-_A_technical_fix_to_the_reproducibility_crisis.
8. Development of the research lifecycle model for library services, K.T.L. Vaughan, MSLS; Barrie E. Hayes, MSLS; Rachel C. Lerner, MSLS, Journal of the Medical Library Association, October 2013.
9. Kravtsov, H.A., Koshel, V.I., Dolgorukov, A.V. and Tsurkan, V.V. (2018), “Trainable model of the calculus over classifications”, Elektronnoe modelirovanie, Vol. 40, no. 3, pp. 63-76.
https://doi.org/10.15407/emodel.40.03.063

Full text: PDF