Electronic Modeling

Vol 37, No 3 (2015)

CONTENTS

Mathematical Modeling and Computation Methods

  F.G. Feyziyev
ON ONE MODIFICATION OF THE PETERSON-GORENSTEIN-ZIERLER ALGORITHM AND ITS EFFECTIVE REALIZATION


3-16
  V.I. Hahanov, Tamer Bani Amer, S.V. Chumachenko, E.I. Litvinova
QUBIT TECHNOLOGIES OF ANALYSIS AND DIAGNOSIS OF DIGITAL DEVICES

17-40

Computational Processes and Systems

  I.N. Pyavchenko
CONFIGURATION OF DISTRIBUTED HIGH-PERFORMANCE STREAMING SYSTEMS OF COLLECTING AND PROCESSING SENSOR INFORMATION

41-50

Parallel Computations

  T.M. Mansurov, I.M. Mammadov
TECHNIQUE OF SOLUTION OF COMPLEX PROBLEMS ON UNIFORM COMPUTING STRUCTURES


51-62

Application of Modeling Methods and Facilities

  V.F. Evdokimov, E.I. Petrushenko, V.A. Kuchaev
COMPLETE VECTOR INTEGRAL MODEL OF THREE-DIMENSIONAL DISTRIBUTION OF EDDY CURRENTS IN CONTINUOUS CASTING UNDER ELECTROMAGNETIC STIRRING IN VERTICAL MCC


63-78
  I.V. Melnyk
SIMULATION OF GUIDING SYSTEM OF PULSED ELECTRON BEAM FROM THE LOW TO HIGH VACUUM IN EQUIPOTENTIAL CHANNEL


79-96
  R.A. Mustafaev
MATHEMATICAL MODELING THE UNSTEADY MOTION OF TWO IMMISCIBLE LIQUIDS WITH ALLOWANCE FOR THE SCHEME OF LIMITED ANISOTROPY OF PERMEABILITY OF POROUS MEDIUM UNDER PUMPING IN GALLERY


97-110
  A.N. Solovev, V.V. Fedorov, V.I. Potetnya, V.V. Nechaev
MODELING PECULIARITIES OF HADRONIC INTERACTIONS FOR SOLVING THE PROBLEMS OF RADIATION TREATMENT USING GEANT4


111-120

 

 

 

ON ONE MODIFICATION OF THE PETERSON-GORENSTEIN-ZIERLER ALGORITHM AND ITS EFFECTIVE REALIZATION

F.G. Feyziyev

ABSTRACT

A modification of the Peterson-Gorenstein-Zierler algorithm based on the Gauss method is proposed. The effective method for realization of the modified algorithm is proposed to accelerate the detection and correction of errors in the binary Bose-Chaudhuri-Hocquenghem codes. The tables of operations over the elements of the finite field were used and it was offered to use the exponent of a power of the chosen primitive element representation instead of the element. The detailed description of decoding algorithm of the received messages is given.

KEYWORDS

Bose-Choudhuri-Hockwinham code, Peterson-Gorenstein-Zierler algorithms, primitive element of finite field, error locator.

REFERENCES

1. Bleikhut, R. (1986), Teoriya i praktika kodov kontroliruyushchikh oshibki [Theory and practice of codes controlling errors], Mir, Moscow, Russia.
2. Ivanov, Ì.À. (2001), Kriptograficheskie metody zashchity informatsii v kompyuternykh sistemakh i setyakh [Cryptographic methods of information protection in computer systems and networks], Kudits-obraz, Moscow, Russia.
3. William, C.H. and Vera, P. (2003), Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, U.K.
4. Birkgof, G. and Barti, T. (1976), Sovremennaya prikladnaya algebra [Modern applied algebra], Mir, Moscow, Russia.
5. Feyziyev, F.G. and Megrdad Babavand (2012), “Description of decoding of cyclic codes in the klass of successeve machines based on Meggitt theorem”, Avtomatika i vychislitelnaya tekhnika, no. 4, pp. 26-33.

Full text: PDF (in Russian)

QUBIT TECHNOLOGIES OF ANALYSIS AND DIAGNOSIS OF DIGITAL DEVICES

V.I. Hahanov, Tamer Bani Amer, S.V. Chumachenko, E.I. Litvinova

ABSTRACT

Technologies and examples of realization of qubit models, methods and algorithms have been proposed for increasing speed of response of existing software and hardware for analysis of digital computing devices as a result of increasing the dimension of structures of the data and memory for simultaneous storage of states under processing. The results of investigation of models and methods for diagnosing digital systems of modeling the reduction of serviceability of primitives removed from service.

KEYWORDS

digital qubit structures, modeling, diagnosis and repair of digital systems.

REFERENCES

1. Nielsen, M.A. and Chuang, I.L. (2010), Quantum computation and quantum information, Cambridge University Press, Cambridge, U.K.
2. Hahanov, V.I., Litvinova, E.I. and Guz, O.A. (2009), Proektirovanie i testirovanie tsifrovykh sistem na kristallakh [Design and testing of digital systems on crystals], KhNRE, Kharkov, Ukraine.
3. Hahanov, V., Wajeb, Gharibi, Litvinova, E. and Chumachenko, S. (2011), “Information analysis infrastructure for diagnosis”, Inform. int. interdisciplinary journal, Vol. 14, no. 7, pp. 2419-2433.
4. Hahanov, V.I., Murad, Ali A., Litvinova, E.I., Guz, O.A. and Hahanova I.V. (2011), “Quantum models of computation proceses”, Radioelektronika i informatika, no. 3, pp. 35-40.
5. Bondarenko, M.F., Hahanov, V.I. and Litvinova, E.I. (2012), “Structure of logical associative multiprocessor”, Avtîmàtika i telemekhanika, no. 10, pp. 71-92.
6. Hahanov, V.I. (1995), Tekhnicheskaya diagnostika tsifrovykh i mikroprotsessornykh struktur [Technical diagnostics of digital and microprocessor structures], ISIO, Kiev, Ukraine. 
7. Hahanov, V., Barkalov, A. and Adamsky, M. (2011), “Infrastructure intellectual property for SoC simulation and diagnosis service”, Springer, pp. 289-330.
8. Gorbatov V.A., (1986), Osnovy diskretnoi matematiki [Principles of higher mathematics], Vysshaya shkola, Moscow, Russia.
9. Hahanov, V.I., Litvinova, E.I., Hahanova, I.V. and Murad, Ali Abbas (2012), “Infrastructure of built-in restoration of logical PLD-circuits”, Radioelektronika i informatika, no. 2, pp. 54-57.
10. Hahanov, V.I., Baghdadi Ammar Awni Abbas, Litvinova, E.I., Shkil, O.S. (2015), “Qubit data structures of computing devices”, Elektronnoe modelirovanie, Vol. 37, no. 1, pp. 49-76.
11. Hahanov, V., Litvinova, E., Gharibi, W. and Murad Ali Abbas (2012), “Qubit models for SoC synthesis parallel and cloud computing”, USA, Vol.1, iss. 1, pp. 16-20.
12. Hahanov, V.I., Litvinova, E.I., Chumachenko, S.V., Baghdadi Ammar Awni Abbas and Eshetie Abebech, Mandefro (2012), “Qubit model for solving the coverage problem”, Proc. of IEEE East-West Design and Test Symposium, Kharkov, 2012, pp.142-144.
13. Chzhen, G., Manning, E. and Metts, G. (1972), Dignostika otkazov tsifrovykh vychislitelnykh sistem [Diagnostics of failures of digital computation systems], Mir, Moscow, Russia.
14. Koal, T., Scheit, D. and Vierhaus, H.T. (2009), “A comprehensive scheme for logic self repair”, Proc. Conf. on Signal Processing Algorithms, Architectures, Arrangements, and Applications, pp. 13-18.

Full text: PDF (in Russian)

CONFIGURATION OF DISTRIBUTED HIGH-PERFORMANCE STREAMING SYSTEMS OF COLLECTING AND PROCESSING SENSOR INFORMATION

O.N. Pyavchenko

ABSTRACT

Versions of configurations of the distributed high-performance systems of data collection and processing of the sensors constructed on the basis of information micro-processor modules, communicators and switchboards of data packages are considered in the article. Estimates of productivity of these configurations are given. The scheme with the maximum productivity is allocated in which parallel processing of signals under the solution of triads of tasks is realized.

KEYWORDS

distributed system, collecting and processing sensor information, configuration, information modules, communicators.

REFERENCES

1. Pyavchenko, O.N. (2011), “The distributed systems of collection and processing of information from sensors of dynamic objects”, Izvestiya YuFU. Tekhnicheskie nauki, no. 5(118), pp. 9-15.
2. Pyavchenko, O.N. (2011), “Models of intellectual microprocessor modules of the systems of collection and processing of information from sensors”, Electronnoe modelirovanie, Vol. 33, no. 3, pp. 61-70.
3. Smirnova, Å.V. and Kozik, P.V. (2012), Tekhnologiya sovremennykh setei Ethernet.Metody kommunikatsii i upravleniya potokami dannykh: Uchebnoe posobie [The technology of today’s networks Ethernet. Methods of communication and data flow management: Textbook], BKhV, St-Petersburg, Russia.
4. Pyavchenko, O.N. (2013), “Communication modules of the high-performance distributed informationmicrocomputer systems”, Izvestiya YuFU. Tekhnicheskie nauki, no. 5(142), pp. 9-14.

Full text: PDF (in Russian)

TECHNIQUE OF SOLUTION OF COMPLEX PROBLEMS ON UNIFORM COMPUTING STRUCTURES

T.M. Mansurov, I.M. Mammadov

ABSTRACT

The technique of solution of complex problems, consisting of simple interconnected tasks, on uniform computing structures, based on mathematical (static) forecasting of a possibility of solving complex problems for HCS taking into account structural and topological characteristics of the process of display is developed.

KEYWORDS

complex problem, uniformity, computing structure, planning, realization, mathematical model.

REFERENCES

1. Cleinrok, L. (1979), Teoriya massovogo obsluzhivaniya [Queueing system], Translated, Ed by Neiman, V.I., Mashinostroenie, Moscow, Russia.
2. Pupkov, K.A. and Yegupov, N.D. (2004), Metody klassicheskoi I sovremennoi teorii avtomaticheskogo upravleniya. V 5 tomakh. T. 1. Matematicheskie modeli, dinamicheskie kharacteristiki i analiz system avtomaticheskogo upravleniya [Methods of classical and modern theory of automatic control. In 5 volumes. Vol. 1. Mathematical models, dynamic characteristics and analysis of the systems of automatic control], Bauman MGTU, Moscow, Russia.
3. Upravlyayushchie vychislitelnye kompleksy [Controlling computing complexes] (2003), Ed by Prokhorov, N.L., Finansy i statistika, Moscow, Russia.
4. Roginsky, V.N., Kharkevich, A.D. and Shneps, M.A. (1981), Teoriya setei svyazi: Uchebnik, pod red. V.N. Roginskogo [Theory of communication network: Manual, Ed by Roginsky, V.N.], Radio i svyaz, Moscow, Russia.
5. Mansurov, T.M. (2001), “Struktural reliability of commutation fields of digital systems of automatic communication”, Yezhemesyachny nauchno-tekhnicheskiy zhurnal po provodnoi i radiosvyazi, televideniyu i radioveshchaniyu, Elektrosvyaz, no. 5, pp. 45-46.
6. Yevreinov, E.V. and Khoroshevskiy, V.G. (1978), Odnorodnyie vychislitelnye sistemy [Homogeneous computing systems], Nauka, Novosibirsk, Russia. 
7. Yevreinov, E.V. and Prangshvili, I.V. (1974), Tsifrovye avtomaty s nastraivaemoi strukturoi [Digital automata with ajustible structure], Energiya, Moscow, Russia.
8. Kovalenko, I.N. (1982), Raschet veroyatnostnykh kharakteristik system [Calculation of probability characteristics of systems], Tekhnika, Kiev, Ukraine.
9. Kovalenko I.N. (1975), Issledovanie po analizu nadezhnosti slozhnykh system [Investigation on analysis of reliability of complex systems], Naukova dumka, Kiev, Ukraine.
10. Yevreinov, E.V. (1981), Odnorodnye vychislitelnye sistemy i sredy [Homogeneous computing systems and media], Radio i svyaz, Moscow, Russia.

Full text: PDF (in Russian)