KRAVTSOV G.A.
ABSTRACT
The author proposes a new classification of mathematical models used in modeling of different processes in the Smart Grid. The mathematical apparatus of the model has been shown as the basic classification feature. However, as it is shown, the use of only mathematical apparatus as the classification feature has some disadvantages. It is required to involve a new classification parameter such as paradigm to determine the choice of the mathematical apparatus.
KEYWORDS
mathematical model, mathematical apparatus, classification feature, paradigm.
REFERENCES
1. Johnson, A.P. (2010), “The history of the Smart Grid evolution at Sourthern California Edison. Innovative Smart Grid Technologies (ISGT)”, Conf. Publications, Gaithersburg, MD, pp. 1-3.
2. Massoud S. Amin and Wollenberg, B.F. (2005), “Toward a Smart Grid”, IEEE P&EMagazine, Vol. 3 (5), pp. 34-41.
3. Stogniy, B.S., Kyrylenko, O.V. and Denysyuk, S.P. (2010), “Intelligent electric network of electric power systems and their technological support”, Tekhnichna elektrodynamyka, no. 6, available at: http://techned.org.ua/article/10-6/st7.pdf.
4. Kravtsov, G.O. (2013), “Simulation of energy smart systems”, Problemy matematychnogo modelyuvannya. Tezy dopovidey Mizhderzhavnoyi naukovo-metodychnoyi konf.. [Problems of mathematical modelling. Proceedings of Interstate scientific and methodological conference], Dneprodzerzhynsk, DDTU, June 5-7, 2013, pp. 52-53.
5. Gjorgjieva, B.J., Rieke, F., Shea-Brown, E. (2010), “When are feedforward microcircuits well-modeled by maximum entropy methods?”, available at: http://arxiv.org/pdf/1011.2797v3.pdf.
6. Sommerstad, T. (2012), A framework and theory for cyber security assessment. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Royal Institute of Technology, Stockholm, Sweden.
7. Pelqim Spahiu and Evans, Ian R. (2011), “Protection Systems that verify and supervise themselves”, IEEE ISGT Innovative Smart Grid Technologies Europe, available at: http://www.ieee-isgt-2011.eu/wordpress/wp-content/uploads/2012/01/ID9_Self-Healing-Grids_Protection_Systems1.pdf.
8. Filatrella, G., Nielsen, A.H. and Pedersen, N.F. “Analysis of a power grid using a Kuramoto-like model”, available at: http://arxiv.org/ftp/arxiv/papers/0705/0705.1305.pdf.
9. Equation Kuramoto-Sivashynskogo, available at: http://www.d-dm.ru/kse/common/.
10. Tarasevich, Yu.Yu. (2002), Perkolyatsiya: teoriya, prilozheniya, algoritmy [Percolation: theory, applications, algorithms], Editorial URSS, Moscow, Russia.
11. Khaykin, S. (2006), Neyronnye seti: polnyy kurs. 2-e izd., Perevod s angl. [Neural networks: a full course. 2nd ed. Translation from English], OOO I.D. Vilyams, Moscow, Russia.
12. Werbos, Р.J. (2006), “Using Adaptive Dynamic Programming to Understand and Replicate Brain Intelligence: the Next Level Design”, available at: http://arxiv.org/ftp/q-bio/papers/0612/0612045.pdf.
13. Borisyuk, G.N. and et al. (1992), “Oscillatory neural network. Mathematic results and applications”, Matematicheskoe modelirovanie, Vol. 4, no. 1, available at: http://masters.donntu.edu.ua/2001/fvti/kuznetsov/diss/lib/neuroosc/index.htm.
14. Vvedenov, A.A., Ezhov, A.A., Knizhnikova, L.A. and et al. (1987), “Nonlinear systems with memory functions and simulation of functions of neural ensembles”, Intellektualnye protsessy i ikh modelirovanie, Nauka, Moscow, available at: http://masters.donntu.edu.ua/2001/fvti/kuznetsov/diss/lib/neuroans/index.htm.
15. Guberman, Sh.A. (1987), “About the relation between perception and thinking in the problems of artificial intelligence”, Intellektualnye protsessy i ikh modelirovanie, Nauka, Moscow, available at: http://masters.donntu.edu.ua/2001/fvti/kuznetsov/diss/lib/aiconcep/index.htm.
16. Vayntsvayg, M.N. and Polyakova, M.P. (1987), “The mechanism of thinking and modeling his work in real time”, Intellektualnye protsessy i ikh modelirovanie, Nauka, Moscow, available at:http://masters.donntu.edu.ua/2001/fvti/kuznetsov/diss/lib/brainmdl/index.htm.
17. Andryukhin, A.I. and Nedbaylo, S.V. (2000), “Modeling of processes in network structures”, Iskusstvennyy intellect, no. 1, available at: http://masters.donntu.edu.ua/2001/fvti/kuznetsov/diss/lib/netmodel/index.htm.
18. Andryukhin, A.I. and Kuznetsov, A.V. (2001), “Boolean models of self-diagnosis of discrete systems”, available at: http://masters.donntu.edu.ua/2001/fvti/kuznetsov/diss/lib/introspe/index.htm.
19. He, M., Murugesan, S. and Zhang, J. (2010), “Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration”, available at: http://arxiv.org/pdf/1008.3932v2.pdf.
20. Venttsel, E.S. (1972), Issledovanie operatsiy [Operations research], Sov. radio, Moscow, Russia.
21. Maslikov, S.A. and Dyuzhaev, L.P. (2009), “Mathematical model of multichannel queuing system”, Visnyk Nats. tekhn. un-tu Ukrayiny «KPI». Seriya Radiotekhnika. Radioaparatobuduvannya, no. 38, pp. 95-97.
22. Kleynrok, L. (1990), Teoriya massovogo obsluzhivaniya [Queueing theory], Mashinostroenie, Moscow, Russia.
23. Emelyanov, V.V., Kureychik, V.V. and Kureychik, V.M. (2003), Teoriya i praktika evolyutsionnogo modelirovaniya [Theory and practice of evolutionary modelling], Fizmatlit, Moscow, Russia.
24. Snityuk, V.E. (2006), “Evolutionary modeling and programming lifecycle of technical systems in deterministic conditions”, Iskusstvennyy intellect, no. 4, pp. 10-15.
Full text: PDF (in Russian)