Yu.N. Minaev, O.Yu. Filimonova, J.I. Minaeva
ABSTRACT
The questions of presentation of FS-granules in the form of 2-adical tree as a way of determination of hierarchical structure FS and its account under further use of FS-granules in the system of granular computing are considered. The posibility of the structure account by calculation of 2-adical (fractal) numbers, defined on the basis of structured matrix, characterizing binary tree, and 2-adical order is shown. FS is a subset of ordered pairs {value/ belonging function} obtains an additional objective characteristic in the form of structured matrixes, that extends potentialities of the FS theory in deciding the problems of management in conditions of uncertainty. The presented examples show a degree of the FS structure influence on its characteristics.
KEYWORDS
fuzzy set, granular computing, p-adical analysis, matrixes of similarity, binary tree.
REFERENCES
1. Minaev Yu.N., Filimonova O.Yu., Minaeva J.I. Hierarchic clusterization of fuzzy data // Electron. Modeling.— 2012.— Vol. 34, No 4. — P. 3—22 (in Russian).
2. Zadeh L.A. Toward a theory of fuzzy information granulation and its centralityin hu-man reasoning and fuzzy logic // Fuzzy Sets and Systems. — 1997.— Vol. 90. — P. 111—127.
3. Zadeh L.A. Toward a perception-based theory of probabilistic reasoning with imp-recise probabilities// J. of Statistical Planning and Inference.—2002.— Vol. 105.—P. 233—264.
4. Aja-Fernandez S., Alberola-Lopez C. Fuzzy Granules as a Basic Word Representation for Computing with Words // SPECOM’2004: 9th Conf. Speech and Computer. — St. Petersburg, Russia, September, 20—22, 2004. ISCA Archive. [Electron resource]. — Access regime:http://www.isca-speech.org/archive
5. Tarasov V.B. Nonstandard Sets and Granulated Calculations. The Fifth Pospelov’s Readings «Artificial Intellect – Problems and Prospects».— [Electron resource]. — Access Regime: http://www.posp.raai.org/data/posp 2011/tarasov.ppt (in Russian).
6. Pedrycz W. Handbook of Granular Computing / Ed. byW. Pedrycz, A. Skowron and V. Kreinovich. — John Wiley & Sons, 2008. — 1150 p.
7. Simon H.A. The Sciences of the Artificial. — Cambridge: MIT Press, 1996. — 216 p.
8. Minaev Yu.N., Filimonova O.Yu. Fuzzy mathematics based on tensor models of indeterminacy. I. Tensor variable in the system of fuzzy sets // Electron. Modeling.—2008.—Vol. 30, No 1.— P. 43—59 (in Russian).
9. Minaev Yu.N., Filimonova O.Yu. Fuzzy mathematics based on tensor models of indeterminacy. II. Fuzzy mathematics in tensor basis. – Ibid.—2008.—Vol. 30, No 2.— P. 4—21 (in Russian).
10. Minaev Yu.N., Filimonova O.Yu., Minaeva J.I. Tensor models of NM-granules and their use to solve the problems of fuzzy arithmetic // Artificial Intellect.—2013.—No 2.—P. 28—32 (in Russian).
11. Colda T.G., Bader B.W. Tensor decompositions and applications. // SIAM Review, Algorithm. — 2009.— Vol. 51, No 3. — P. 455—500.
12. Mirkin B. Clustering for Data Mining.—Boca Raton, FL: Chapman and Hall/CRC.—2005.
13. Murtagh F. On ultrametricity, data coding, and computation// J. Classification. —2004.—Vol. 21. — P. 167—184.
14. Bradley P.E. Mumford dendrograms // The Computer Journal.— 2010.—Vol. 53, No 4.—P. 393—404.
15. Delgado M., Gymez-Skarmeta A.F., Vila A. On the Use of Hierarchical Clustering in Fuzzy// Modeling // International Journal of Approximate Reasoning.—1996.—No 14.—P. 237—257.
16. Skowron A. and Rauszer C. The discernibility matrices and functions in information systems // Decision Support by Experience — Application of the Rough Sets Theory. Ed. R. Slowinski. Kluwer Academic Publishers, 1992. — P. 331—362.
17. Khrennikov A.Yu. Non-Archimedian Analysis and Its Applications. — Moscow: Fizmatlit, 2003.— 216 p.(in Russian).
18. Nechaev S.K., Vasilyev O.A. On metric structure of ultrametric spaces / arXiv:cond-mat/0310079v1 [cond-mat.stat-mech] 3 Oct. 2003.
19. Schikhof W.H. Ultrametric Calculus.—(Cambridge studies in advanced mathematics; 4) 1.P-adic numbers. — Cambridge University Press, 1984. — 317 p.
20. Coblitz N. R-Adic Analysis and Dzeta-Functions / Trans. from English by V.V. Shokurov. — Moscow: Мир, 1981. — 192 p.(in Russian).
21. Katok S.B. R-Adic Analysis in Comparison with Substantial One / Trans. from English by P.A. Kolgushkin.— Moscow: MCSMA, 2004. — 112 p.(in Russian).