Numerical-analytical Solution of a Nonlinear Stationary Heat Conduction Problem for the Infinite Temperature-sensitive Multilayer Plate

GAVRYSH V.I.

ABSTRACT

A method has been proposed for solving the nonlinear boundary value problems of heat conduction as an example of an infinite plate with temperature-sensitive multilayer insulated facial surfaces, convective heat transfer and locally focused internal heat sources. A numerical analysis of temperature field for the two-layer plate has been done with results of the experiment presented.

KEYWORDS

temperature, conductivity, convective heat transfer, ideal thermal contact, thermosensitive piecewise homogeneous structures. 

REFERENCES

1. Carpinteri, A. and  Paggi, M. (2008), “Thermoelastic Mismatch in Nonhomogeneous Beams”, J. Eng. Math,  Vol.  61, no. 2-4, pp. 371-384.
2. Noda, N. (1991), “Thermal Stresses in Materials with Temperature-dependent Properties”, Appl. Mech. Rev., Vol.  44, pp. 383-397.
3. Otao, Y., Tanigawa, O. and Ishimaru, O. (2000), “Optimization of Material Composition of Functionality Graded Plate for Thermal Stress Relaxation Using a Genetic Algorithm”, J. Therm. Stresses, Vol.  23, pp. 257-271.
4. Tanigawa, Y., Akai, T. and  Kawamura, R. (1996), “Transient Heat Conduction and Thermal Stress Problems of a Nonhomogeneous Plate With Temperature-dependent Material Properties”, Ibid., Vol. 19, no. 1, pp. 77-102.
5. Tanigawa, Y. and  Otao, Y. (2002), “Transient Thermoelastic Analysis of Functionally Graded Plate with Temperature-dependent Material Properties Taking into Account the Thermal Radiation”,  Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu, Vol.  2, pp. 133-134.
6. Yangian, Xu and  Daihui, Tu. (2009), “Analysis of Steady Thermal Stress in a ZrO2/FGM/Ti-6Al-4V Composite ECBF Plate with Temperature-dependent Material Properties by NFEM”,  2009-WASE Int. Conf. on Informa. Eng.
, Vol. 2-2, pp. 433-436.
7.
Sergeev, V.A. and Khodakov, A.M. (2010), “The thermal model of the bipolar transistor structure with inhomogeneity in the crystal contact with the heat sink”, Elektronnaya tekhnika. Ser. 2. Poluprovodnikovye pribory, no.  1, pp. 12-18.
8.
Nemirovskiy, Yu.V. and  Yankovskiy, A.P.  (2008), “The solution of the stationary problem of heat conduction of layered anisotropic inhomogeneous plates by the method of initial functions”,  Mat. metody ta fiz.-mekh. polya, Vol. 51, no. 2, pp. 222-238.
9.
Turiy, O.  (2008), “Nonlinear contact-boundary problem of thermomechanics for irradiated bilayer plate, coupled interim layer”, Fizyko-matematychne modelyuvannya ta informatsiyni tekhnolohiyi, Vol. 8, pp. 118-132.
10.
Belik, V.D., Uryukov, B.A., Frolov, G.A. and Tkachenko, G.V.  (2008), “Numerical-analytical method of solving nonlinear time-dependent heat conductivity equation”,Inzhenernofizicheskiy zhurnal, Vol.  81, no. 6, pp. 1058-1062.
11.
Berlov, O.V. and  Veselovskyy, V.V. (2008), “Solution of nonlinear heat conduction problems for composite structural elements”,  Metalurgiyna teplotekhnika: Zbirnyk naukovykh prats Natsionalnoyi metalurgiynoyi akademiyi Ukrayiny, pp. 20-30.
12.
Barvinskyy, A.F. and  Gavrysh, V.I. (2009), Nonlinear problem of  heat conduction for  inhomogeneous layer with internal heat sources”,  Problemy mashinostroeniya, Vol. 12, no. 1, pp. 47-53.
13.
Gavrysh, V.I. and  Fedasyuk, D.V. (2010), “The method of calculation of temperature fields for thermosensitive piecewise homogeneous band of foreign inclusions”,  Promyshlennaya teplotekhnika, Vol.  32, no.  5, pp. 18-25.
14.
Gavrysh, V.I. (2012), “Modelling of temperature modes in heat sensitive microelectronic devices with through foreign inclusions”,Elektronnoe modelirovanie, Vol.  34, no.  4, pp. 99-107.
15. Gavrysh, V.I. (2012), “Thermal State Modelling in Thermosensitive Elements of Microelectronic Devices with Reach-through Foreign Inclusions”,  Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol. 15, no.  3, pp. 247-251.
16. Gavrysh, V.I. (2011), “Modelling the Temperature Conditions in the Three-dimensional Piecewise Homogeneous Elements of Microelectronic Devices”, Ibid., Vol. 14, no. 4, pp. 478-482.
17.
Gavrysh, V. (2013), “Research of temperature conditions in heat-sensitive plate with  through foreign inclusion ”, Fizyko-matematychne modelyuvannya ta informatsiyni tekhnologiyi,  Vol. 18, pp. 43-50.
18.
Kolyano, Yu.M. (1992), Metody teploprovodnosti i termouprugosti neodnorodnogo tela [Methods of thermal conductivity and thermoelasticity of  heterogeneous body], Naukova dumka, Kiev, Ukraine.
19.
Podstrigach, Ya.S., Lomakin, V.A. and  Kolyano, Yu.M. (1984), Termouprugost  tel neodnorodnoy struktury [Thermoelasticity bodies of inhomogeneous structure], Nauka, Moscow, Russia.
20.
Korn, G. and  Korn, T. (1977), Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical handbook for scientists and engineers], Nauka, Moscow, Russia.
21.
Lomakin, V.A. (1976), Teoriya uprugosti neodnorodnykh tel [The theory of elasticity inhomogeneous bodies], Izd-vo Mosk. un-ta, Moscow, Russia.
22. Berman, R. (1979), Teploprovodnost  tverdykh tel [The thermal conductivity of solids], Mir, Moscow, Russia. 

Full text: PDF (in Russian)