TIMCHENKO L.I., SHPAKOVICH V.V., KOKRYATSKAYA N.I.
ABSTRACT
The authors of the article consider conditions, necessary for development of the method and computer facilities for parallel-hierarchical image transformation, using highly productive GPUadapters. The mathematical models for the parallel-hierarchical (PH) network and a method for PH network training to recognize dynamic patterns have been developed.
KEYWORDS
parallel-hierarchical transformation, training on the network, moving images, normalizing equation, classification, laser lines.
REFERENCES
1. Adinets, A. and Voevodin, Vl. (2008), “Graphic challenge supercomputers”, Otkrytye sistemy, no. 4. available at: http://www.osp.ru/os/2008/04/5114497/.
2. Skribtsov, P.V. and Dolgopolov, A.V. (2007), “Performance comparison of graphics cards and CPU in the calculations for large volumes of data to be processed”, Neyrokompyutery: razrabotka, primenenie, no. 9, pp. 421-425.
3.“Acceleware released the world's first commercially available cluster based on GPU NVIDIA”, (2009), Zhurnal iXBT.com., № 10, available at: http://www.ixbt.com/news/all/index.shtml?10/63/33.
4. Chitty, D.M. (1991), “A data parallel approach to genetic programming using programmable graphics hardware”, Proc. of the 9th annual conf. on genetic and evolutionary computation, “GECCO 07”, Vol. 2, pp. 1566-1573.
5. Luo, Z., Liu, H. and Wu, X. (2005), “Artificial neural network computation on graphic process unit”, Proc. of the IEEE International Joint Conf. on Neural Networks, IJCNN '05, Vol. 1, pp. 622-626.
6. Li, J.M., Wan, D.L., Chi, Z.X. and Hu, X.P. (2006), “A parallel particle swarm optimization algorithm based on fine-grained model with GPU accelerating”, J. of Harbin Institute of Technology, Vol. 38, no. 12, pp. 2162-2166.
7. Xu, R. and Wunsch, II D.C. (2008), Clustering, IEEE-Hoboken, Wiley Press, NJ.
8. Everitt, D., Landau, S. and Leese, M. (2001), Clustering analysis. 4th edition, Arnold, London, UK.
9. Wunsch, II D.C. (2009), “ART properties of interest in engineering applications”, Proc. IEEE. INNS International Joint Conf. on Neural Networks, Atlanta, GA, 2009.
10. Knuth, D. (1997), The Art of Computing Programming: Fundamental Algorithms. 3rd Edition, Vol. 1. Addison-Wesley.
11. Martnez-Zarzuela, M., Pernas, F., de Pablos, A. and et al. (2009), “Adaptative Resonance Theory Fuzzy Networks Parallel Computation Using CUDA”, Bio-Inspired Systems: Computational and Ambient Intelligence, Vol. 5517, pp. 149-156.
12. Gorchetchnikov, M., Ames, H. and Versace, M. (2008), “Simulating Biologically Realistic Neural Models on Graphics Process Units”, ICCNS, Boston, MA.
13. Meuth, R.J. (2007), “GPUs surpass computers at repetitive calculations”, Potentials, IEEE, Vol. 26, no. 6, pp. 12-23.
14. Martin, A.J., Burns, S.M., Lee, T.K. and et al. (1986), “The design of an asynchronous microprocessor”, Advanced Res, VLSI: Proc. Decennial Caltech Conf., MIT Press Cambridge, MA.
15. Sejun, Kim. (2003), A GPU based Parallel Hierarchical Fuzzy ART Clustering, Advanced Res.
16. Prett, U. (1982), Tsifrovaya obrabotka izobrazheniy. V 2-kh kn. [Digital Image Processing. In 2 Vol.], Mir, Moscow, Russia.
17. Primeneniye tsifrovoy obrabotki signalov. Pod red. Oppengeyma, E. (1980), [The use of digital signal processing. Ed. Oppenheim, E.], Mir, Moscow, Russia.
18. Pogrebnoy, V.A. (1984), Bortovye sistemy obrabotki signalov [On-board signal processing system], Naukova dumka, Kiev, Ukraine.
19. Timchenko, L.I., Melnikov, V.V. and Kokryatskaya, N.I.(2011), “Method of organizing parallel hierarchical network for pattern recognition”, Kibernetika i sistemnyy analiz, no. 1, pp. 152-163.
Full text: PDF (in Russian)