Методика перетворення кодових послідовностей у відповідності до системи координат модуляційного диска

І.В. Косяк, канд. техн. наук, Д.Ю. Манько, канд. фіз.-мат наук,
Є.В. Беляк, канд. техн. наук, А.А. Крючин, чл.-кор. НАН України
Інститут проблем реєстрації інформації НАН України
Україна, 03113, Київ, вул. М. Шпака, 2
e-mail: Ця електронна адреса захищена від спам-ботів. Вам необхідно увімкнути JavaScript, щоб побачити її., dmitriy.manko@gmail;
Ця електронна адреса захищена від спам-ботів. Вам необхідно увімкнути JavaScript, щоб побачити її., Ця електронна адреса захищена від спам-ботів. Вам необхідно увімкнути JavaScript, щоб побачити її.

Èlektron. model. 2024, 46(5):35-49

https://doi.org/10.15407/emodel.46.05.035

АНОТАЦІЯ

Проведено аналіз актуальних підходів, що використовуються при проектуванні системи оптичного запису модуляційних дисків. Завдяки адаптуванню математичних моделей побудовано програмні алгоритми перетворення кодових послідовностей, що представлені у полярній, гомогенній і параметричній системі координат, а також встановлено унікальні особливості кожного з підходів при розробці універсальної методики для забезпечення точного та ефективного перетворення модуляційних патернів. Зазначено, що полярна система координат є найбільш придатною для практичного застосування у за­дачах перетворення кодових послідовностей. Її здатність ефективно відображати кругові та симетричні структури, а також зручне представлення об'єктів з радіальною симетрією надають переваги при створенні модуляційних дисків. У результаті проведеного дос­лід­ження було визначено ефективні програмні рішення з автоматизації процесів обробки даних при формуванні модуляційних патернів. Впровадження розроблених програмних алгоритмів представленого підходу полягає у адаптації кодової послідовності до ак­туаль­ної метрики у рамках проектування оптичної системи на основі модуляційних дисків. Представлена методика забезпечує можливість здійснювати перетворення кодо­вих послідовностей незалежно від обраної системи координат, що значно підвищує її гнучкість та універсальність для практичного застосування.

КЛЮЧОВІ СЛОВА:

модуляційні диски, кодові послідовності, декартова система координат, полярна система координат, параметрична система координат, гомогенна система координат.

СПИСОК ЛІТЕРАТУРИ

  1. Patruno, C., Renò, V., Nitti, M., Pernisco, G. et al. Optical encoder neural network: A CNN-based optical encoder for robot localization // Optical Engineering. 2023.62, N.04, P. 041402:1–041402:9. URL: https://doi.org/10.1117/1.oe.62.4.041402 (date of access: 06.09.2024).
  2. Hossain, M., Rakshit, J. K., & Pal Singh, M. Numerical Analysis of all-optical silicon microring resonator-based cyclic redundancy check encoder // Journal of Nanophotonics. 2022. 16, N.3, P. 036007:1–036007:16. URL: https://doi.org/10.1117/1.jnp.16.036007 (date of access: 06.09.2024).
  3. Megalingam, R.K., Anil, S.A., & Varghese, J.M. FPGA based navigation platform for fixed path navigation with distance estimation using rotation encoder. 2016 Internatio­nal Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). 2016. 3134—3138. URL: https://doi.org/10.1109/iceeot.2016.7755279 (date of access: 06.09.2024).
  4. Ali, B., Sadekov, R.N., & Tsodokova, V.V. A review of navigation algorithms for unmanned aerial vehicles based on Computer Vision Systems. Gyroscopy and Navigation. 2022, V.13, N.4, 241—252. URL: https://doi.org/10.1134/s2075108722040022 (date of access: 06.09.2024).
  5. Seybold, J., Bülau, A., Fritz, K.-P., Frank et al. Miniaturized optical encoder with micro structured encoder disc. Applied Sciences. 1029, V.9, N. 3, 452:1—452:15. URL: https://doi.org/10.3390/app9030452 (date of access: 10.09.2024).
  6. Liu, S., Zhang, H.C., Zhang, L. et al. Full-state controls of terahertz waves using tensor coding metasurfaces. ACS Applied Materials & Interfaces. 2017, V. 9, N. 25, P. 21503—21514. URL: https://doi.org/10.1021/acsami.7b02789 (date of access: 10.09.2024).
  7. Liu, S., & Cui, T.J. Flexible controls of terahertz waves using coding and programmable metasurfaces. IEEE Journal of Selected Topics in Quantum Electronics. 2017, V. 23, N. 4, P. 1—12. URL: https://doi.org/10.1109/jstqe.2016.2599273 (date of access: 10.09.2024).
  8. Eberhardt, K., Esser, S., & Haider, H. Abstract feature codes: The building blocks of the implicit learning system. Journal of Experimental Psychology: Human Perception and Performance. 2017, V. 43, N. 7, P. 1275—1290. URL: https://doi.org/10.1037/xhp0000380 (date of access: 13.09.2024).
  9. Cai, Y., Li, P., Li, X.-W., et al. Converting panax ginseng DNA and chemical fingerprints into two-dimensional barcode // Journal of Ginseng Research. 2017, V. 41, N. 3, P. 339—346. URL: https://doi.org/10.1016/j.jgr.2016.06.006 (date of access: 13.09.2024).
  10. Feng, M., Li, Y., Zheng, Q. Two-dimensional coding phase gradient metasurface for RCS reduction. Journal of Physics D: Applied Physics. 2018, V. 51, N. 37, P. 375103:1—375103:6. URL: https://doi.org/10.1088/1361-6463/aad5ad (date of access: 13.09.2024).
  11. Feng, M., Chen, X., Li, Y. et al. Circularly polarized spin‐selectivity absorbing coding phase gradient metasurface for RCS reduction. Advanced Theory and Simulations. 2020, V. 3, N. 3. P. 1900217:1—1900217:6. URL: https://doi.org/10.1002/adts.201900217 (date of access: 13.09.2024).
  12. Yin, J., Wu, Z., & Deng, J. Shared‐Aperture 2‐bit coding metasurface for simultaneous manipulation of space wave and surface wave. Advanced Materials Technologies. 2024, V. 9, N. 10, P. 2301140-1—2301140-8. URL: https://doi.org/10.1002/admt.202302151 (date of access: 15.09.2024).
  13. Yin, T., Ren, J., Zhang, B et al. Reconfigurable transmission‐reflection‐integrated coding metasurface for full‐space electromagnetic wavefront manipulation. Advanced Optical Materials. 2023, V. 12, N. 2. P. 2301326:1—2301326 :12. URL: https://doi.org/10.1002/202301326 (date of access: 15.09.2024).
  14. Wang, X., & Fu, F.-W. Gray codes over certain run-length sequences for local rank modulation. Science China Information Sciences. 2018, V. 61, N. 10, P. 100305:1–100305:16. URL: https://doi.org/10.1007/s11432-018-9509-y (date of access: 15.09.2024).

КОСЯК Ігор Васильович, кад. техн. наук., пров. наук. співробітник Інституту проблем реєстрації інформації НАН України. В 1990 р. закінчив Київський політехнічний інс­титут. Область наукових досліджень — інформаційні техології, оптичний запис інформації.

МАНЬКО Дмитро Юрійович, канд. фіз.-мат. наук, ст. наук. співробітник Інституту проблем реєстрації інформації НАН України. В 2003 р. закінчив Київський національний університет ім. Тараса Шевченка. Область наукових досліджень — прикладна оптика, поляризація світла, математичне моделювання фізичної оптики.

БЕЛЯК Євген В’ячеславович, канд. техн. наук., ст. наук. співробітник Інституту проблем реєстрації інформації НАН України. В 2001 р. закінчив Київський національний університет ім. Тараса Шевченка. Область наукових досліджень — багатошарові носії інформації, органічні люмінофори, фотоелектричні перетворювачі, сонячні батареї, цифрові системи фотореєстрації, математичне моделювання в оптичного запису інформації.

КРЮЧИН Андрій Андрійович, чл.-кор. НАН України, д-р техн. наук, заст. директора Інституту проблем реєстрації інформації НАН України. В 1971 р. закінчив Київський національний університет ім. Тараса Шевченка. Область наукових досліджень — над­щільний оптичний запис інформації, оптичні носії на основі багатокомпонентних халькогенідних напівпровідників, металополімерні структури, методи захисту інформації, технології захисту оптичних носіїв та цінних паперів.

Повний текст: PDF