ПОСЛІДОВНА ПОБУДОВА АЛГОРИТМІВ ЛІНІЙНОЇ ЗГОРТКИ ЗА ДОПОМОГОЮ ГІПЕРКОМПЛЕКСНИХ ЧИСЛОВИХ СИСТЕМ

Я.О. Калиновський, Ю.Є. Бояринова, Я.В. Хицко, А.С. Сукало

Èlektron. model. 2018, 40(6):05-20
https://doi.org/10.15407/emodel.40.06.005

АНОТАЦІЯ

Розглянуто синтез алгоритмів лінійної згортки масивів, довжина яких не дорівнює 2n, за допомогою методів гіперкомплексних числових систем (ГЧС). Синтез засновано на рекурентному обрамленні сум парних добутків відліків згортки з подальшим застосуванням ізоморфних ГЧС. Отримані алгоритми за числом множень близьки до алгоритмів Винограда.

КЛЮЧОВІ СЛОВА:

гіперкомплексна числова система, лінійна згортка, ізоморфізм, множення, бікомплексні числа, квадриплексні числа.

СПИСОК ЛІТЕРАТУРИ

1. Блейхут Р. Быстрые алгоритмы цифровой обработки сигналов. М.: Мир, 1989, 449 с.
2. Нуссбаумер Г. Быстрое преобразование Фурье и алгоритмы вычисления сверток. М.: Радио и связь, 1985, 248 с.
3. Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2003, 604 с.
4. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. Цифровая обработка сигналов. М.: Радио и связь, 1985, 312 с.
5. Калиновский Я.А. Структура гиперкомплексного метода быстрого вычисления линейной свертки дискретных сигналов // Реєстрація, зберігання і обробка даних, 2013, 15, № 1, c. 31—44.
6. Синьков М.В., Бояринова Ю.Е., Калиновский Я.А. Конечномерные гиперкомплексные числовые системы. Основы теории. Применения. Киев: Инфодрук, 2010, 388с.
7. Калиновский Я.А., Бояринова Ю.Е. Высокоразмерные изоморфные гиперкомплексные числовые системы и их использование для повышения эффективности вычислений. Киев: Инфодрук, 2012, 183 с.
8. Калиновский Я.А., Бояринова Ю.Е., Синькова Т.В., Cукало А.С. Построение высокоразмерных изоморфных гиперкомплексных числовых систем для повышения эффективности
вычислительных процессов // Электрон. моделирование, 2016, 38,№ 6, с. 67— 84.
9. Кантор И.Л., Солодовников А.С. Гиперкомплексные числа. М.: Наука, 1973,144 с.
10. Каліновський Я.О. Розвиток методів теорії гіперкомплексних числових систем для математичного моделювання і комп’ютерних обчислень. Дис... д-ра техн. наук: 01.05.02. Київ, 2007, 308 с.
11. Калиновский Я.А., Синькова Т.В. Алгоритмы быстрого вычисления циклической свертки c представлением дискретных сигналов гиперкомплексными числами // Реєстрація, зберігання і обробка даних, 2014, 16, №1, с. 9—18.
12. Kalinovsky Y.A., Boyarinova Y.E., Sukalo A.S., Khitsko Y.V. The basic principles and the structure and algorithmically software of computing by hypercomplex number. arXiv preprint arXiv: 1708.04021, 2017.
13. Калиновский Я.А., Бояринова Ю.Е., Хицко Я.В., Сукало А.С. Программный комплекс для гиперкомплексных вычислений// Электрон. моделирование, 2017, 39,№5, с. 81—96.

КАЛИНОВСКИЙ Яков Александрович, д-р техн. наук, ст. науч. сотр. Ин-та проблем регистрации информации НАН Украины. В 1965 г. окончил Киевский политехнический ин-т. Область научных исследований — теория гиперкомплексных числовых систем и их применение в математическом моделировании.

БОЯРИНОВА Юлия Евгеньевна, канд. техн. наук, ст. науч. сотр. Ин-та проблем регистрации информации НАН Украины, доцент Национального технического университета Украины «Киевский политехнический ин-т им. Игоря Сикорского», который окончила в 1997 г. Область научных исследований — теория гиперкомплексных числовых систем и их применение в математическом моделировании.

ХИЦКО Яна Владимировна, канд. техн. наук, доцент Национального технического университета Украины «Киевский политехнический ин-т им. Игоря Сикорского», который окончила в 2005 г. Область научных исследований — теория гиперкомплексных числовых систем и их применение в математическом моделировании.

СУКАЛО Алина Сергеевна, ассистент Национального университета водного хозяйства (г. Ровно). В 2013 г. окончила Житомирский госуниверситет. Область научных исследований — математическое моделирование и вычислительные процессы.

Повний текст: PDF